Detection of human T-lymphocyte antigens (HTLA antigens) on thymosin-inducible T-cell precursors

1978 ◽  
Vol 9 (4) ◽  
pp. 436-442 ◽  
Author(s):  
Joseph Kaplan ◽  
Ward D. Peterson
2004 ◽  
Vol 199 (10) ◽  
pp. 1367-1377 ◽  
Author(s):  
Yoshihisa Yamano ◽  
Cyril J. Cohen ◽  
Norihiro Takenouchi ◽  
Karen Yao ◽  
Utano Tomaru ◽  
...  

Human T lymphocyte virus type I (HTLV-I)–associated chronic inflammatory neurological disease (HTLV-I–associated myelopathy/tropical spastic paraparesis [HAM/TSP]) is suggested to be an immunopathologically mediated disorder characterized by large numbers of HTLV-I Tax–specific CD8+ T cells. The frequency of these cells in the peripheral blood and cerebrospinal fluid is proportional to the amount of HTLV-I proviral load and the levels of HTLV-I tax mRNA expression. As the stimulus for these virus-specific T cells are immunodominant peptide–human histocompatibility leukocyte antigen (HLA) complexes expressed on antigen-presenting cells, it was of interest to determine which cells express these complexes and at what frequency. However, until now, it has not been possible to identify and/or quantify these peptide–HLA complexes. Using a recently developed antibody that specifically recognizes Tax11-19 peptide–HLA-A*201 complexes, the level of Tax11-19–HLA-A*201 expression on T cells was demonstrated to be increased in HAM/TSP and correlated with HTLV-I proviral DNA load, HTLV-I tax mRNA load, and HTLV-I Tax–specific CD8+ T cell frequencies. Furthermore, CD4+ CD25+ T cells were demonstrated to be the major reservoir of HTLV-I provirus as well as Tax11-19 peptide–HLA-A*201 complexes. These results indicate that the increased detection and visualization of peptide–HLA complexes in HAM/TSP CD4+ CD25+ T cell subsets that are shown to stimulate and expand HTLV-I Tax–specific CD8+ T cells may play an important role in the pathogenesis of HTLV-I–associated neurological disease.


2017 ◽  
Vol 18 (7) ◽  
pp. 1409 ◽  
Author(s):  
Man Liu ◽  
Rumana Yasmeen ◽  
Naomi Fukagawa ◽  
Liangli Yu ◽  
Young Kim ◽  
...  

1998 ◽  
Vol 275 (4) ◽  
pp. L679-L686 ◽  
Author(s):  
Paul Borron ◽  
Francis X. McCormack ◽  
Baher M. Elhalwagi ◽  
Zissis C. Chroneos ◽  
James F. Lewis ◽  
...  

Investigation of possible mechanisms to describe the hyporesponsiveness of pulmonary leukocytes has led to the study of pulmonary surfactant and its constituents as immune suppressive agents. Pulmonary surfactant is a phospholipid-protein mixture that reduces surface tension in the lung and prevents collapse of the alveoli. The most abundant protein in this mixture is a hydrophilic molecule termed surfactant-associated protein A (SP-A). Previously, we showed that bovine (b) SP-A can inhibit human T lymphocyte proliferation and interleukin-2 production in vitro. Results presented in this investigation showed that different sources of human SP-A and bSP-A as well as recombinant rat SP-A inhibited human T lymphocyte proliferation in a dose-dependent manner. A structurally similar collagenous protein, C1q, did not block the in vitro inhibitory action of SP-A. The addition of large concentrations of mannan to SP-A-treated cultures also did not disrupt inhibition, suggesting that the effect is not mediated by the carbohydrate recognition domain of SP-A. Use of recombinant mutant SP-As revealed that a 36-amino acid Arg-Gly-Asp (RGD) motif-containing span of the collagen-like domain was responsible for the inhibition of T cell proliferation. A polyclonal antiserum directed against an SP-A receptor (SP-R210) completely blocked the inhibition of T cell proliferation by SP-A. These results emphasize a potential role for SP-A in dampening lymphocyte responses to exogenous stimuli. The data also provide further support for the concept that SP-A maintains a balance between the clearance of inhaled pathogens and protection against collateral immune-mediated damage.


1986 ◽  
Vol 6 (9) ◽  
pp. 3207-3214 ◽  
Author(s):  
J M Leiden ◽  
D P Dialynas ◽  
A D Duby ◽  
C Murre ◽  
J Seidman ◽  
...  

The gene encoding the beta chain of the human T-cell receptor for antigen is composed of variable (V), diversity (D), joining (J), and constant (C) gene segments which undergo specific rearrangements during T-lymphocyte ontogeny. Southern blot analyses of seven human T-cell tumor lines and normal human T-lymphocyte clones revealed that most of these T-cell lines rearrange their Ti beta genes differently. The T-cell tumor line HPB-MLT rearranges and transcribes both of its Ti beta genes. Cloning and sequencing of the Ti beta cDNAs corresponding to these rearrangements revealed that one of the rearranged Ti beta genes is defective, while the other is functional and corresponds to the Ti beta protein expressed on the surface of these cells. Thus, this cell line displays a pattern of allelic exclusion of Ti beta gene expression. A comparison of four C beta 2-containing Ti beta cDNAs from three different cell lines revealed that three of the four utilize the same J beta 2.5 gene segment joined to different D beta and V beta genes, suggesting that there may be preferential use of this J gene during J beta 2 rearrangements. Hybridization analyses with probes for the alpha and beta genes of the T-cell receptor and the T-cell-specific T gamma gene revealed that HPB-MLT cells appear to express approximately equivalent amounts of RNA corresponding to each of the rearranged Ti alpha and Ti beta genes. However, they express a much lower level of T gamma RNA.


Sign in / Sign up

Export Citation Format

Share Document