Effects of (15S)-15-methyl prostaglandin F2α methyl ester and estrogens upon the corpus luteum and conceptus of the rhesus monkey

1980 ◽  
Vol 20 (5) ◽  
pp. 807-823 ◽  
Author(s):  
John W. Wilks
1984 ◽  
Vol 27 (2) ◽  
pp. 285-298 ◽  
Author(s):  
F.J. Auletta ◽  
D.L. Kamps ◽  
S. Pories ◽  
J. Bisset ◽  
M. Gibson

2004 ◽  
Vol 82 (6) ◽  
pp. 363-371 ◽  
Author(s):  
R M Narayansingh ◽  
M Senchyna ◽  
M M Vijayan ◽  
J C Carlson

In this study we examined the mechanism of corpus luteum (CL) regression by measuring changes in expression of prostaglandin G/H synthase-1 (PGHS-1) and -2 (PGHS-2) in day 4 CL and inducible heat shock protein 70 (HSP-70) in day 4 and day 9 CL of immature superovulated rats. The rats were superovulated and treated with 500 µg of prostaglandin F2α (PGF2α) on day 4 or day 9 after CL formation. Ovaries and serial blood samples were removed during the 24-hour period following treatment. Plasma progesterone was determined by radioimmunoassay while mRNA abundance and protein expression were assessed by semiquantitative RT-PCR and immunoblot analysis, respectively. One hour after PGF2α, both day 4 and day 9 rats exhibited a significant decrease in progesterone secretion; however, there was a greater decrease in day 9 rats. In ovarian samples removed on day 4, there was a significant increase in mRNA for PGHS-2 at 1 hour after PGF2α. PGHS-1 mRNA content remained unchanged. Immunoblot analyses showed an increase in PGHS-2 protein expression only at 8 h. There were no changes in PGHS-1 protein expression. In day 9 rats, ovarian HSP-70 protein levels increased by 50% after PGF2α injection; however, on day 4 there was no change in expression of this protein over the sampling period. These results suggest that expression of PGHS-2 may be involved in inhibiting progesterone production and that expression of HSP-70 may be required for complete CL regression in the rat.Key words: rat, prostaglandin F2α, corpus luteum, prostaglandin G/H synthase, heat shock protein-70.


2010 ◽  
Vol 24 (3) ◽  
pp. 632-643 ◽  
Author(s):  
Edward Arvisais ◽  
Xiaoying Hou ◽  
Todd A. Wyatt ◽  
Koumei Shirasuna ◽  
Heinrich Bollwein ◽  
...  

Abstract Little is known about the early intracellular events that contribute to corpus luteum regression. Experiments were designed to determine the effects of prostaglandin F2α (PGF2α) on phosphatidylinositol-3-kinase (PI3K)/Akt signaling in the corpus luteum in vivo and in vitro. Treatment of midluteal-phase cows with a luteolytic dose of PGF2α resulted in a rapid increase in ERK and mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase (p70S6K1) signaling and a rapid suppression of Akt phosphorylation in luteal tissue. In vitro treatment of primary cultures of luteal cells with PGF2α also resulted in an increase in ERK and mTOR/p70S6K1 signaling and a diminished capacity of IGF-I to stimulate PI3K, Akt, and protein kinase C ζ activation. Accounting for the reductions in PI3K and Akt activation observed in response to PGF2α treatment, we found that PGF2α promoted the phosphorylation of serine residues (307, 612, 636) in the insulin receptor substrate 1 (IRS1) peptide sequence in vivo and in vitro. Serine phosphorylation of IRS1 was associated with reduced formation of IGF-I-stimulated IRS1/PI3Kp85 complexes. Furthermore, treatment with inhibitors of the MAPK kinase 1/ERK or mTOR/p70S6K1 signaling pathways prevented PGF2α-induced serine phosphorylation of IRS1 and abrogated the inhibitory actions of PGF2α on Akt activation. Taken together, these experiments provide compelling evidence that PGF2α treatment stimulates IRS1 serine phosphorylation, which may contribute to a diminished capacity to respond to IGF-I. It seems likely that the rapid changes in phosphorylation events are among the early events that mediate PGF2α-induced corpus luteum regression.


1984 ◽  
Vol 73 (2) ◽  
pp. 282-283 ◽  
Author(s):  
Charles H. Spilman ◽  
Diane C. Beuving ◽  
Adelbert D. Forbes ◽  
Theodore J. Roseman ◽  
Robert M. Bennett

Sign in / Sign up

Export Citation Format

Share Document