Intra-nucleus accumbens amphetamine: Dose-dependent effects on food intake

1986 ◽  
Vol 25 (6) ◽  
pp. 1149-1151 ◽  
Author(s):  
Kenneth R. Evans ◽  
Franco J. Vaccarino
1989 ◽  
Vol 256 (1) ◽  
pp. R276-R280 ◽  
Author(s):  
T. Gerardo-Gettens ◽  
B. J. Moore ◽  
J. S. Stern ◽  
B. A. Horwitz

Lactation in the rat is marked by pronounced hyperphagia and suppression of brown fat (BAT) thermogenic capacity. We previously examined the possibility that elevated prolactin levels mediate these changes. The present study evaluated the effect of varying prolactin levels on food intake, BAT mitochondrial GDP binding, and carcass adiposity. Female rats were injected daily for 10 days with ovine prolactin at one of three doses: high = 3.0, medium = 1.0, or low = 0.3 micrograms/g body wt. Controls were injected with 0.9% NaCl. A group of uninjected rats served as an additional control. Cumulative food intake was significantly elevated in a dose-dependent manner in the prolactin-treated animals relative to the saline-injected and uninjected controls. Compared with the saline controls, the mean cumulative food intake was greatest at the high dose (20% increase), intermediate at the medium dose (17%), and smallest at the low dose (12%). Prolactin-treated rats gained significantly more weight during the experiment than did controls. Despite the hyperphagia in the prolactin-treated rats, no significant differences in BAT mitochondrial GDP binding were observed among the five groups. These data indicate that elevated prolactin levels stimulate food intake in a dose-dependent manner and that this hyperphagia is not accompanied by an increase in BAT mitochondrial GDP binding.


2000 ◽  
Vol 279 (3) ◽  
pp. R1025-R1034 ◽  
Author(s):  
Yuwaraj K. Narnaware ◽  
Pierre P. Peyon ◽  
Xinwei Lin ◽  
Richard E. Peter

In mammals, neuropeptide Y (NPY) is a potent orexigenic factor. In the present study, third brain ventricle (intracerebroventricular) injection of goldfish NPY (gNPY) caused a dose-dependent increase in food intake in goldfish, and intracerebroventricular administration of NPY Y1-receptor antagonist BIBP-3226 decreased food intake; the actions of gNPY were blocked by simultaneous injection of BIBP-3226. Goldfish maintained on a daily scheduled feeding regimen display an increase in NPY mRNA levels in the telencephalon-preoptic area and hypothalamus shortly before feeding; however, a decrease occured in optic tectum-thalamus. In both fed and unfed fish, brain NPY mRNA levels decreased after scheduled feeding. Restriction in daily food ration intake for 1 wk or food deprivation for 72 h resulted in increased brain NPY mRNA levels. Results from these studies demonstrate that NPY is a physiological brain signal involved in feeding behavior in goldfish, mediating its effects, at least in part, through Y1-like receptors in the brain.


1992 ◽  
Vol 263 (1) ◽  
pp. R84-R88
Author(s):  
A. Bado ◽  
L. Moizo ◽  
J. P. Laigneau ◽  
M. Gauthier ◽  
M. Dubrasquet ◽  
...  

Intravenous bombesin produced a dose-related stimulation of luminal gastric somatostatin output and a concomitant dose-dependent inhibition of food intake in the gastric fistula cat. Maximal food intake inhibition was observed at 1,280 pmol.kg-1.h-1 and corresponded to 65 +/- 7% (P less than 0.01). These effects of bombesin were dose dependently abolished by the specific bombesin-receptor antagonist, [Leu13-psi(CH2NH)-Leu14]bombesin. Furthermore, intragastric administration of somatostatin-14, at doses corresponding to those found in the gastric lumen in response to intravenously administered bombesin, significantly inhibited the first 30 min of food intake. This administration had however no effect on total (daily) food intake. We therefore suggest that luminal gastric somatostatin could at least account for bombesin-induced short-term satiety.


2020 ◽  
Vol 45 (11) ◽  
pp. 1931-1941 ◽  
Author(s):  
Adele Romano ◽  
Maria Vittoria Micioni Di Bonaventura ◽  
Cristina Anna Gallelli ◽  
Justyna Barbara Koczwara ◽  
Dorien Smeets ◽  
...  

Abstract Binge eating disorder (BED) is the most frequent eating disorder, for which current pharmacotherapies show poor response rates and safety concerns, thus highlighting the need for novel treatment options. The lipid-derived messenger oleoylethanolamide (OEA) acts as a satiety signal inhibiting food intake through the involvement of central noradrenergic and oxytocinergic neurons. We investigated the anti-binge effects of OEA in a rat model of binge-like eating, in which, after cycles of intermittent food restrictions/refeeding and palatable food consumptions, female rats show a binge-like intake of palatable food, following a 15-min exposure to their sight and smell (“frustration stress”). Systemically administered OEA dose-dependently (2.5, 5, and 10 mg kg−1) prevented binge-like eating. This behavioral effect was associated with a decreased activation (measured by mapping the expression of c-fos, an early gene widely used as a marker of cellular activation) of brain areas responding to stress (such as the nucleus accumbens and amygdala) and to a stimulation of areas involved in the control of food intake, such as the VTA and the PVN. These effects were paralleled, also, to the modulation of monoamine transmission in key brain areas involved in both homeostatic and hedonic control of eating. In particular, a decreased dopaminergic response to stress was observed by measuring dopamine extracellular concentrations in microdialysates from the nucleus accumbens shell, whereas an increased serotonergic and noradrenergic tone was detected in tissue homogenates of selected brain areas. Finally, a decrease in corticotropin-releasing factor (CRF) mRNA levels was induced by OEA in the central amygdala, while an increase in oxytocin mRNA levels was induced in the PVN. The restoration of a normal oxytocin receptor density in the striatum paralleled the oxytocinergic stimulation produced by OEA. In conclusion, we provide evidence suggesting that OEA might represent a novel potential pharmacological target for the treatment of binge-like eating behavior.


2010 ◽  
Vol 207 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Keiko Nakahara ◽  
Tetsuro Katayama ◽  
Keisuke Maruyama ◽  
Takanori Ida ◽  
Kenji Mori ◽  
...  

We compared the central mechanisms of feeding suppression by the anorexigenic hormones neuromedin U (NMU) and neuromedin S (NMS) in rats. I.c.v. injection of either NMU or NMS dose dependently decreased 3-h food intake during the first quarter of a dark period. Pretreatment involving i.c.v. injection of a specific anti-NMS IgG blocked the suppression of food intake induced by i.c.v.- and i.p.-injected leptin, but anti-NMU IgG elicited no blockade. Quantitative PCR analysis revealed that i.c.v. injection of NMU or NMS caused a dose-dependent increase in CRH and proopiomelanocortin mRNA expression in the paraventricular nucleus (PVN) and arcuate nucleus (Arc) respectively. In tissue cultures of the Arc, secretion of α-melanocyte-stimulating hormone was stimulated by NMU and NMS, with more potent stimulation by NMS. The time-course curves of the increase in neuronal firing rate in Arc slices in response to NMU and NMS showed almost the same pattern, with a peak 10–15 min after treatment, whereas the time-course curves for the PVN slices differed between NMU and NMS. These results suggest that NMS and NMU may share anorexigenic effects, depending on physiological conditions.


2011 ◽  
Vol 301 (1) ◽  
pp. R244-R254 ◽  
Author(s):  
Yoshihiro Katsuura ◽  
Jennifer A. Heckmann ◽  
Sharif A. Taha

Infusion of a μ-opioid receptor (MOR) agonist into the nucleus accumbens (NAcc) drives voracious food intake, an effect hypothesized to occur through increased tastant palatability. While intake of many palatable foods is elevated by MOR stimulation, this manipulation has a preferential effect on fatty food ingestion. Consumption of high-fat foods is increased by NAcc MOR stimulation even in rats that prefer a carbohydrate-rich alternative under baseline conditions. This suggests that NAcc MOR stimulation may not simply potentiate palatability signals and raises the possibility that mechanisms mediating fat intake may be distinct from those underlying intake of other tastants. The present study was conducted to investigate the physiological mechanisms underlying the effects of NAcc MOR stimulation on fatty food intake. In experiment 1, we analyzed lick microstructure in rats ingesting Intralipid to identify the changes underlying feeding induced by infusion of a MOR-specific agonist into the NAcc. MOR stimulation in the NAcc core, but not shell, increased burst duration and first-minute licks, while simultaneously increasing the rate and duration of Intralipid ingestion. These results suggest that MOR activation in the core increases Intralipid palatability and attenuates inhibitory postingestive feedback. In experiment 2, we measured the effects of MOR stimulation in the NAcc core on consumption of nonnutritive olestra. A MOR-specific agonist dose dependently increased olestra intake, demonstrating that caloric signaling is not required for hyperphagia induced by NAcc MOR stimulation. Feeding induced by drug infusion in both experiments 1 and 2 was blocked by a MOR antagonist. In experiment 3, we determined whether MOR activation in the NAcc core could attenuate satiety-related signaling caused by infusion of the melanocortin agonist MTII into the third ventricle. Suppression of intake caused by MTII was reversed by MOR stimulation. Together, our results suggest that MOR stimulation in the NAcc core elevates fatty food intake through palatability mechanisms dependent on orosensory cues and suppression of satiety signals inhibiting food intake.


1984 ◽  
Vol 246 (1) ◽  
pp. R1-R12 ◽  
Author(s):  
M. F. Dallman

The relationships among food intake, insulin secretion, and adrenocortical function are reviewed. It is hypothesized that a major role of structures in, or passing through, the ventromedial hypothalamus is to inhibit food intake, insulin secretion, and adrenocortical function during the day (in the nocturnally active rat) and that this activity is normally driven by elements within the suprachiasmatic nuclei. Lesions of the ventromedial hypothalamus of rats result in nonrhythmic food intake, hyperinsulinemia, nonrhythmic adrenocortical function, and obesity. Adrenalectomy prevents or reverses the effects of lesions of the ventromedial hypothalamus on food intake, insulin secretion, and obesity, and corticosteroid replacement restores them. Because the actions of corticosteroids are both time- and dose-dependent, it is proposed that the effects of the tonic levels of corticosteroids observed after lesions of the ventromedial hypothalamus are to augment the hyperphagia, hyperinsulinemia, and substrate flow into fat to a greater extent than would occur if there were a normal circadian rhythm in adrenocortical function.


1976 ◽  
Vol 4 (3) ◽  
pp. 361-364 ◽  
Author(s):  
Myra O. Smith ◽  
Robert C. Holland

Sign in / Sign up

Export Citation Format

Share Document