Single-input—single-output control system synthesis

1985 ◽  
Vol 9 (6) ◽  
pp. 557-566 ◽  
Author(s):  
R.D. Johnson ◽  
G.W. Barton ◽  
M.L. Brisk
Author(s):  
B S Dalay ◽  
V S Medvedev ◽  
T A Romanova

Methods of analysing single input and single output control systems are well established (1). The same is not true of techniques for solving problems involving multi-inputs and multi-outputs. Such problems arise when controlling manipulators having many degrees of freedom. In this paper techniques of control system synthesis for manipulator mechanisms are considered. The method is based on locating the roots of the characteristic equation to give the desired dynamic properties for every link's servo system in the mechanism. Each link is treated independently. Simple examples to illustrate the method are presented.


2005 ◽  
Vol 18 (3) ◽  
pp. 439-451
Author(s):  
Milica Naumovic

This paper deals with the special replacement of the shift operator and its associated z transform by delta operator and ? transform, respectively. The aim of the paper is to clarify the role of zeros of discretized linear single input single output continuous-time systems modeled by shift and delta operators. In particular, the effect of zero dynamics on the control system design based on classical pole-zero assignment in the case of both operators is considered. The analysis is illustrated by simulation results.


2016 ◽  
Vol 8 (6) ◽  
Author(s):  
Matteo Verotti ◽  
Nicola P. Belfiore

A manipulator control system, for which isotropic compliance holds in the Euclidean space E(3), can be significantly simplified by means of diagonal decoupling. However, such simplification may introduce some limits to the region of the workspace where the sought property can be achieved. The present investigation reveals how to detect which peculiar subset, among four different classes, a given manipulator belongs to. The paper also introduces the concept of control gain ratio for each specific single-input/single-output joint control law in order to limit the maximum gain required to achieve the isotropic compliance condition.


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Jesús U. Liceaga-Castro ◽  
Irma I. Siller-Alcalá ◽  
Eduardo Liceaga-Castro ◽  
Luis A. Amézquita-Brooks

Via several cases of study it is shown that a passive multivariable linear control system, contrary to its single input single output counterpart, may not be robust. Moreover, it is shown that lack of robustness can be exposed via the multivariable structure function.


2021 ◽  
Author(s):  
Qiandiao Wei ◽  
He Xu ◽  
Siqing Chen ◽  
Weiwang Fan

Abstract Soft robots driven by pressurized fluid have recently been attracted more attention and achieved a variety of innovative applications in bionics, medical surgery, rehabilitation, search, and rescue system. And they have been demonstrated to be able to perform many different tasks, especially in some conditions of demand a high degree of compliance. Generally, they consisted of multiple actuate channels that require independent works. Consequently, a mass of pressure regulators and input pipelines are demanded, which will increase the complexity of the control system. To solve this problem, we propose a new pressure control method inspired by the control bus of electronic interface technology in this paper. An addressable pressure control bus system based on band-pass valve (BPV) and square wave of pressure (control signal) was designed. It consisted of a pressure supply source and an addressing signal, they are controled by two regulators, respectively. One of the pressure pipelines serves as the control bus to transmit the control pressure signal, which plays an addressing signal role in the system. The other serves as the pressure supply source of the multi-channel actuators. The BPV can be set to different opening pressure bands to realize the setting of diverse outputs address codes on the bus. This method discovered the work mode of double-input multi-output, which will get rids of the traditional control method of single-input single-output. In this paper, we designed the BPV and tested its function. To demonstrate the feasibility of this method proposed, a control system with two output ports was established. The result has shown that the output port can be selected by the pressure square wave signal, which realizes the function of single input multiple outputs. It reduces the complexity of the control strategy of the fluid control system.


Author(s):  
Kyoungchul Kong ◽  
Masayoshi Tomizuka

A human wearing an exoskeleton-type assistive device results in a parallel control system that includes two controllers: the human brain and a digital exoskeleton controller. Unknown and complicated characteristics of the brain dynamically interact with the exoskeleton controller which makes the controller design challenging. In this paper, the motion control system of a human is regarded as a feedback control loop that consists of a brain, muscles and the dynamics of the extended human body. The brain is modeled as a control algorithm amplified by a fictitious variable gain. The variable gain compensates for characteristic changes in the muscle and dynamics. If a human is physically impaired or subjected to demanding work, the exoskeleton should generate proper assistive forces, which is equivalent to increasing the variable gain. In this paper, a control algorithm that realizes the fictitious variable gain is designed and its performance and robustness are discussed for single-input single-output cases. The control algorithm is then verified by simulation results.


AIChE Journal ◽  
2000 ◽  
Vol 46 (8) ◽  
pp. 1616-1631 ◽  
Author(s):  
Karel Stryczek ◽  
Mario Laiseca ◽  
Coleman Brosilow ◽  
Marshall Leitman

Sign in / Sign up

Export Citation Format

Share Document