On-line failure diagnosis for compression refrigeration plants

1995 ◽  
Vol 18 (1) ◽  
pp. 31-41 ◽  
Author(s):  
H.T. Grimmelius ◽  
J. Klein Woud ◽  
G. Been
Keyword(s):  
1988 ◽  
Vol 21 (15) ◽  
pp. 89-93
Author(s):  
E. López-Mellado ◽  
G. Escalada-Imaz
Keyword(s):  

2015 ◽  
Vol 766-767 ◽  
pp. 1141-1147
Author(s):  
S. Charles ◽  
D. Joslin Vijaya

Many of the machines and systems having rotating components are designed for operation at high speeds, and hence, it is obvious that only these elements are damaged initially and becomes the root cause of a defect in any machine. Using on line, continuous monitoring techniques, any defect in a rotating part can be detected at its initial stage itself and the user could be alerted before it leads to a catastrophic failure. In this experimental work of the acoustical failure diagnosis, three domestic mixers, the first one in healthy condition, the next mixer about to fail and the last with completely damaged bush were analyzed, with a Type-1 and Delta ohm HD2010 Model sound level meter (SLM). The acoustical readings of the three mixers were measured and tabulated in decibel, using Delta Ohm Noise Studio software. Graphs were drawn for different sets of readings and by analyzing the graphs of the three mixers, the threshold value of the initiation of the defect was found to be 80 decibel, at which failure starts.


Author(s):  
Johannes Huegle ◽  
Christopher Hagedorn ◽  
Matthias Uflacker

The efficiency of modern automotive body shop assembly lines is highly related to the reduction of downtimes due to failures and quality deviations within the manufacturing process. Consequently, the need for implementing tools into the assembly lines for on-line monitoring, and failure diagnosis, also under the prism of improving the troubleshooting, is of great importance. While the identification of root causes and elimination of failures is usually built upon individual on-site expert knowledge, causal graphical models (CGMs) have opened the possibility to make a purely data-driven assessment. In this demo, we showcase how a CGM of the production process is incorporated into a monitoring tool to function as a decision-support system for an operator of a modern automotive body shop assembly line and enables fast and effective handling of failures and quality deviations.


Author(s):  
William Krakow

In the past few years on-line digital television frame store devices coupled to computers have been employed to attempt to measure the microscope parameters of defocus and astigmatism. The ultimate goal of such tasks is to fully adjust the operating parameters of the microscope and obtain an optimum image for viewing in terms of its information content. The initial approach to this problem, for high resolution TEM imaging, was to obtain the power spectrum from the Fourier transform of an image, find the contrast transfer function oscillation maxima, and subsequently correct the image. This technique requires a fast computer, a direct memory access device and even an array processor to accomplish these tasks on limited size arrays in a few seconds per image. It is not clear that the power spectrum could be used for more than defocus correction since the correction of astigmatism is a formidable problem of pattern recognition.


Author(s):  
A.M.H. Schepman ◽  
J.A.P. van der Voort ◽  
J.E. Mellema

A Scanning Transmission Electron Microscope (STEM) was coupled to a small computer. The system (see Fig. 1) has been built using a Philips EM400, equipped with a scanning attachment and a DEC PDP11/34 computer with 34K memory. The gun (Fig. 2) consists of a continuously renewed tip of radius 0.2 to 0.4 μm of a tungsten wire heated just below its melting point by a focussed laser beam (1). On-line operation procedures were developped aiming at the reduction of the amount of radiation of the specimen area of interest, while selecting the various imaging parameters and upon registration of the information content. Whereas the theoretical limiting spot size is 0.75 nm (2), routine resolution checks showed minimum distances in the order 1.2 to 1.5 nm between corresponding intensity maxima in successive scans. This value is sufficient for structural studies of regular biological material to test the performance of STEM over high resolution CTEM.


Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Author(s):  
John F. Mansfield ◽  
Douglas C. Crawford

A method has been developed that allows on-line measurement of the thickness of crystalline materials in the analytical electron microscope. Two-beam convergent beam electron diffraction (CBED) patterns are digitized from a JEOL 2000FX electron microscope into an Apple Macintosh II microcomputer via a Gatan #673 CCD Video Camera and an Imaging Systems Technology Video 1000 frame-capture board. It is necessary to know the lattice parameters of the sample since measurements are made of the spacing of the diffraction discs in order to calibrate the pattern. The sample thickness is calculated from measurements of the spacings of the fringes that are seen in the diffraction discs. This technique was pioneered by Kelly et al, who used the two-beam dynamic theory of MacGillavry relate the deviation parameter (Si) of the ith fringe from the exact Bragg condition to the specimen thickness (t) with the equation:Where ξg, is the extinction distance for that reflection and ni is an integer.


Sign in / Sign up

Export Citation Format

Share Document