Rock mechanics and development of advanced hard rock breaking methods. Symposium

2014 ◽  
Vol 904 ◽  
pp. 292-295 ◽  
Author(s):  
Jian Zhao ◽  
Yi Ji Xu

Field test of particle impact drilling (PID) technology was firstly carried out in deep well and hard formation in Sichuan province china on Oct. 2013. The test formation was named Xu Jiahe, which was very difficult to penetration. Field test result shows that the ROP (rate of penetration) was nearly doubled by this technology. It indicates that there is a profound application prospect of particle impact drilling, especially for hard rock formation. In this paper, the equipment and working principle was analyzed. The experiment and simulation results showed that the rock breaking efficiency was highly increased by this technology. The details of this field test were presented too in this paper that proved the sound effect of PID.


2021 ◽  
pp. 121-125
Author(s):  
Cedric E. Gregory
Keyword(s):  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jianan Li ◽  
Heping Xie ◽  
Ling Chen ◽  
Cong Li ◽  
Zhiqiang He

Exploration of deep-rock mechanics has a significant influence on the techniques of mining and rock mechanics. Rock coring technique is the basic method for all rock mechanics study. With the increase of the drilling depth and increasing strength of the hard rock, how to obtain high-quality rock core through various coring techniques is an eternal work. Here an innovative method is applied to design the new coring system to maximize the efficiency of operation. The stress conditions or parameters of rock core in the coring are analyzed, and the mechanism of the core with in situ stress is shown in this paper. The conflict of the core and coring tool chamber is proposed for the innovative design. The innovative design method is fulfilled by the theory of inventive problem solving (TRIZ). An improved coring system for the full-length core with in situ stress was obtained with the solutions of improved coring mechanism, cutting mechanism, and spiral drill pipe.


2020 ◽  
Vol 10 (18) ◽  
pp. 6294
Author(s):  
Fengchao Wang ◽  
Dapeng Zhou ◽  
Xin Zhou ◽  
Nanzhe Xiao ◽  
Chuwen Guo

A high-pressure water jet can break rock efficiently, which is of great potential to overcome the problems of a tunnel boring machine (TBM) in full-face hard rock tunnel digging, such as low digging efficiency and high disc cutter wear rate. Therefore, this paper presented a new tunneling method that is a TBM coupled with a high-pressure water jet. The rock failure mechanism under the coupled forces of a disc cutter and water jet was analyzed at first. Then, the finite element method (FEM) and smoothed particle hydrodynamics (SPH) method were used to establish a numerical model of rock broken by the disc cutter and water jet. Effects of parameters on rock breaking performance were studied based on the numerical model. Moreover, an experiment of the water jet cutting marble was carried out to verify the reliability of the numerical simulation. Results showed that the high-pressure water jet can increase the TBM digging efficiency and decrease the forces and wear rate of the disc cutter. The optimum nozzle diameter is 1.5 mm, while the optimum jet velocity is 224.5 m/s in this simulation. The results can provide theoretical guidance and data support for designing the most efficient system of a TBM with a water jet for digging a full-face hard rock tunnel.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012008
Author(s):  
Wenxia Li ◽  
Weiqiang Song ◽  
Jingtao Liu ◽  
Xiuping Chen ◽  
Huidong Mu

Abstract In order to improve the rate of penetration (ROP) in Permian igneous rock strata, the rock mechanics is modeled based on the continuous logging data (acoustic, density, caliper, resistivity and gamma logging) and confirmatory indoor experiments. The model considers the influence of well collapse and expansion on logging data in igneous rock formation to improve the calculation accuracy. Based on this model, the continuous profile of Permian compressive strength, tensile strength, mud content, internal friction angle are calculated, and then the differences of Permian strata in the north, middle and south of the oilfield are further compared and analyzed. The results can provide support for the optimization of efficient rock breaking and reservoir fracturing technology.


2020 ◽  
Vol 53 (9) ◽  
pp. 4221-4230 ◽  
Author(s):  
Songyong Liu ◽  
Fangyue Zhou ◽  
Hongsheng Li ◽  
Yueqiang Chen ◽  
Fengchao Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document