Finite element analyses of isotropic and anisotropic cohesive soils with a view to correctly predicting impending collapse

2020 ◽  
Vol 10 (24) ◽  
pp. 8839
Author(s):  
Kwangwoo Lee ◽  
Junyoung Ko ◽  
Hyunsung Lim ◽  
Joon Kyu Lee

This paper presents the results of a numerical analysis into undrained stability of conical excavation in multi-layered clays. Stability predictions for a wide range of geometric and material combinations are calculated by finite element analyses. The results from the present analysis are expressed in the familiar form of stability numbers reflecting the effect of (1) angle of inclination, (2) depth ratio, which is relative top layer thickness to excavation depth, (3) strength difference between two layers on the rigid base, (4) width ratio, which is excavation height to radius at the bottom of excavation, and (5) thickness ratio, which is the ratio of the excavation height to thickness of soil 1 layers. The obtained stability numbers are compared with existing solutions published in the literature. The failure mechanism in multi-layered clays are also discussed in terms of the displacement pattern.


Author(s):  
Jing Zhang ◽  
Hong-wei Guo ◽  
Juan Wu ◽  
Zi-ming Kou ◽  
Anders Eriksson

In view of the problems of low accuracy, small rotational angle, and large impact caused by flexure joints during the deployment process, an integrated flexure revolute (FR) joint for folding mechanisms was designed. The design was based on the method of compliance and stiffness ellipsoids, using a compliant dyad building block as its flexible unit. Using the single-point synthesis method, the parameterized model of the flexible unit was established to achieve a reasonable allocation of flexibility in different directions. Based on the single-parameter error analysis, two error models were established to evaluate the designed flexure joint. The rotational stiffness, the translational stiffness, and the maximum rotational angle of the joints were analyzed by nonlinear finite element analyses. The rotational angle of one joint can reach 25.5° in one direction. The rotational angle of the series FR joint can achieve 50° in one direction. Experiments on single and series flexure joints were carried out to verify the correctness of the design and analysis of the flexure joint.


Author(s):  
Abdullah Togay ◽  
Özgür Anil ◽  
Ümmü Karagöz Işleyen ◽  
İbrahim Ediz ◽  
Cengizhan Durucan

Sign in / Sign up

Export Citation Format

Share Document