Deformation properties of a sub-bituminous coal mass. Technical note

Author(s):  
P.K. Kaiser ◽  
S.M. Maloney
Author(s):  
Oleksandr Shashenko ◽  
◽  
Vladyslava Cherednyk ◽  
Natalia Khoziaikina ◽  
Dmitro Shashenko ◽  
...  

Purpose. Justification of the gas collectors formation physical model on the basis of research of conformity of permeability of rock mass to the full diagram of rock sample deformation. Methodology consists in sequential analysis of the stages of the complete deformation diagram of the rock specimen under “hard” loading, comparing them with the stages of formation of the high stress zone in front of the lava bottom and statistical analysis of laboratory test results. Results. Based on the rock’s deformation properties analysis and their comparison with the rock sample full deformation diagram, the physical model of formation of gas reservoirs during the development of gas-saturated coal seam is substantiated. Within the solved problem framework, four stages of the complete deformation process are analyzed, namely: elastic, at the limit of strength, out-of-bounds stage and equivoluminal flow zone. The gas collector boundaries, which are the characteristic points of the rock sample deformation diagram in specified deformations mode (the limit of elastic strength and the limit of final strength) are determined. It is proved that the structural and textural features of the coal mass in connection with the course of gas-dynamic processes are manifested in the change in the pores and cracks volume contained in it, which together make the filtration space. Knowledge regarding the transfer of the permeability changes established regularities and free methane accumulation zones formation to the real rock mass, if the process of its forgery is considered as a consistent change of geomechanical states of rocks, is obtained. Scientific novelty lies in the first substantiated possibility of modeling the stress state before the longwall face by equivalent stages of the rock sample destruction in the given deformations mode. Gradual comparative analysis of the internal mechanism of rock samples deformation along the complete deformation diagram allowed establishing causal relationships between geomechanical and gas-dynamic processes in coal mass, and qualitatively characterizing general trends in permeability and volumetric expansion in changes of these samples. Practical value of the work lies in the justification of the principle of construction of a digital geomechanical model for the detection of man-made gas collectors in a mined coal mass.


Even after a century of investigation coal remains a complex mass of which the component parts can neither be handled nor separately identified. Many authors have recognised a variety of plant remains in coal, and the specific identification of these organisms and tissues has made good progress; but such work is truly palæontological, and the points of interest in it are the organisms and not the coal mass of which they form a part. From another point of view coal is a rock, but, unlike most rocks, the nature and orientation of its component parts are scarcely known. One of the most distinguished of living geologists once said to me that he would like to have available about microscopic sections of coal rationalised data comparable with those already obtained by petrologists about thin rock sections. The present paper is a contribution in that direction. It is an attempt to present systematically certain observations made incidentally in the course of the joint researches Dr. R. V. Wheeler and I have been follow­ing out on various other aspects of the hydra-headed “coal-problem.”


2021 ◽  
Author(s):  
Tommy Schmitt ◽  
Alex Zoelle ◽  
Sally Homsy ◽  
Timothy Fout ◽  
Travis Shultz ◽  
...  

2020 ◽  
Vol 12 (7) ◽  
pp. 2885 ◽  
Author(s):  
Yuantian Sun ◽  
Guichen Li ◽  
Junfei Zhang ◽  
Jiahui Xu

The roadway instability in deep underground conditions has attracted constant concerns in recent years, as it seriously affects the efficiency of coal mining and the safety of personnel. The large rheological deformations normally occur in deep roadway with soft coal mass. However, the failure mechanism of such roadways is still not clear. In this study, based on a typical soft coal roadway in the field, the in-situ measurements and rock mass properties were obtained. The rheological deformation of that roadway was revealed. Then a time-dependent 3D numerical model was established and verified. Based on the verified model, the deformation properties and evolutionary failure mechanism of deep coal roadway were investigated in detail. The results showed that the deformation of the soft coal roadway demonstrated rheological behavior and the applied support structures failed completely. After roadway excavation, the maximum and minimum stresses around the roadway deteriorated gradually with the increase of time. The failure zones in soft coal mass expanded increasingly over time, which had a negative effect on roadway stability in the long-term. According to the findings, helpful suggestions were further presented to control the rheological deformation in the roadway. This research systematically reveals the instability mechanism of the deep coal roadway and provides some strategies for maintaining roadway stability, which can significantly promote the sustainability of mining in deep underground coal mines.


2012 ◽  
Vol 21 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Susan Fager ◽  
Tom Jakobs ◽  
David Beukelman ◽  
Tricia Ternus ◽  
Haylee Schley

Abstract This article summarizes the design and evaluation of a new augmentative and alternative communication (AAC) interface strategy for people with complex communication needs and severe physical limitations. This strategy combines typing, gesture recognition, and word prediction to input text into AAC software using touchscreen or head movement tracking access methods. Eight individuals with movement limitations due to spinal cord injury, amyotrophic lateral sclerosis, polio, and Guillain Barre syndrome participated in the evaluation of the prototype technology using a head-tracking device. Fourteen typical individuals participated in the evaluation of the prototype using a touchscreen.


1998 ◽  
Vol 47 (3) ◽  
pp. 153-160
Author(s):  
Wang ◽  
Park ◽  
Kang ◽  
Oh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document