Three-dimensional numerical modelling of surface subsidence induced by underground mining

2012 ◽  
Vol 524-527 ◽  
pp. 503-507
Author(s):  
Zhao Hui Liu ◽  
Li Cui ◽  
Tao Zhang ◽  
Qiang Liu ◽  
Er Yang Chen ◽  
...  

The ground subsidence and deformations caused by underground mining not only affect people’s life tremendously, but also ruin the local eco-environment. These phenomenons (disasters) should be controlled and rehabilitated. For this purpose, in this paper, the characteristic and values of surface subsidence, deformation and movements were evaluated and calculated using some kinds of technological theories and methodology such as probability integral method and so on. Based on the Google Earth image and digital relief maps as well as the predicted results and data, several types of 3D thematic maps of mining subsidence and deformation were designed and mapped in order to carry on the land reclamation or rehabilitation in the mining subsidence and deformation areas. The research results can be fitted well with the reality of surface subsidence and deformations.


2010 ◽  
Vol 37 (7-8) ◽  
pp. 999-1007 ◽  
Author(s):  
E. Bourgeois ◽  
M.H.J. Rakotonindriana ◽  
A. Le Kouby ◽  
P. Mestat ◽  
J.F. Serratrice

2021 ◽  
Author(s):  
Ramtin Sabeti ◽  
Mohammad Heidarzadeh

<p>Landslide-generated waves have been major threats to coastal areas and have led to destruction and casualties. Their importance is undisputed, most recently demonstrated by the 2018 Anak Krakatau tsunami, causing several hundred fatalities. The accurate prediction of the maximum initial amplitude of landslide waves (<em>η<sub>max</sub></em>) around the source region is a vital hazard indicator for coastal impact assessment. Laboratory experiments, analytical solutions and numerical modelling are three major methods to investigate the (<em>η<sub>max</sub></em>). However, the numerical modelling approach provides a more flexible and cost- and time-efficient tool. This research presents a numerical simulation of tsunamis due to rigid landslides with consideration of submerged conditions. In particular, this simulation focuses on studying the effect of landslide parameters on <em>η<sub>max</sub>.</em> Results of simulations are compared with our conducted physical experiments at the Brunel University London (UK) to validate the numerical model.</p><p>We employ the fully three-dimensional computational fluid dynamics package, FLOW-3D Hydro for modelling the landslide-generated waves. This software benefit from the Volume of Fluid Method (VOF) as the numerical technique for tracking and locating the free surface. The geometry of the simulation is set up according to the wave tank of physical experiments (i.e. 0.26 m wide, 0.50 m deep and 4.0 m). In order to calibrate the simulation model based on the laboratory measurements, the friction coefficient between solid block and incline is changed to 0.41; likewise, the terminal velocity of the landslide is set to 0.87 m/s. Good agreement between the numerical solutions and the experimental results is found. Sensitivity analyses of landslide parameters (e.g. slide volume, water depth, etc.) on <em>η<sub>max </sub></em>are performed. Dimensionless parameters are employed to study the sensitivity of the initial landslide waves to various landslide parameters.</p>


2020 ◽  
Vol Special Issue (1) ◽  
Author(s):  
Kalunga Ngoma ◽  
Victor Mutambo

Konkola Copper Mine’s Number 4 Shaft is a trackless underground mine applying sublevel open stoping (SLOS) mining method. Number 4 shaft wants to increase ore production from 1 million metric tonnes per annum to 3 million metric tonnes per annum in the next 5 years but ore recovery is 70% or less and dilution is 20% or more. In order to achieve the desired annual target of 3 million metric tonnes ore recovery should be increased from70% to (≥85%) and dilution should be reduced from 20% to (≤10%). Despite being one of the most used underground mining methods, the current SLOS has a challenge of high unplanned dilution. This paper reviews and evaluates parameters that influence recovery and unplanned dilution in sublevel open stopes and applies numerical modelling using PHASE2 software to establish the influence of stress environment on unplanned dilution at the mine. The input parameters for numerical modelling were: Uniaxial Compressive strength (UCS=170MPa), Geological Strength Index (GSI) =55, Young’s Modulus (E) =26000MPa, Hoek-Brown constant (s) =0.0067, Hoek-Brown constant (mi) =20 and Poisson ratio (v) =0.2 major principal stress (σ1) 39MPa, intermediate stress (σ2= 18MPa) and the minor principal stress (σ3= 15MPa). Results obtained from review of mine production records indicate that the main factors that influence unplanned dilution at Number 4 shaft are: poor ground conditions, lack of compliance to recommended stope designs, poor drilling and blasting practices, presence of geological discontinuities, adopted mining sequence of extracting high ore grade first that leads to creation of high stress blocks within the orebody and delayed mucking practice. Results obtained from PHASE 2D model indicate that total displacement of 90mm is recorded in the hangingwall hence influencing stope wall instability that leads to increased unplanned dilution. After stope extraction, it was observed that 60MPa of induced stress developed at the top right corner and 45-50 MPa at the crown pillar and right bottom corner of the stope.


2015 ◽  
Vol 36 (2) ◽  
pp. 17-28
Author(s):  
Lucyna Florkowska ◽  
Jan Walaszczyk

Abstract Numerical modelling is an important tool used to analyse various aspects of the impact of underground mining on existing and planned buildings. The interaction between the building and the soil is a complex matter and in many cases a numerical simulation is the only way of making calculations which will take into consideration the co–existence of a number of factors which have a significant influence on the solution. The complexity of the matter also makes it a difficult task to elaborate a proper mathematical model – it requires both a thorough knowledge of geologic conditions of the subsoil and the structural characteristics of the building. This paper discusses the most important problems related to the construction of a mathematical model of a building-mining subsoil system. These problems have been collected on the basis of many years of experience the authors have in observing the surveying and tensometric deformations of the rock–mass and buildings as well as in mathematical and numerical modelling of the observed processes.


2011 ◽  
Vol 40 (6-7) ◽  
pp. 356-362 ◽  
Author(s):  
R Luchoo ◽  
L T Harper ◽  
N A Warrior ◽  
A Dodworth

Sign in / Sign up

Export Citation Format

Share Document