Three Dimensional Mapping of Ground Deformation Disasters Caused by Underground Coal Mining

2012 ◽  
Vol 524-527 ◽  
pp. 503-507
Author(s):  
Zhao Hui Liu ◽  
Li Cui ◽  
Tao Zhang ◽  
Qiang Liu ◽  
Er Yang Chen ◽  
...  

The ground subsidence and deformations caused by underground mining not only affect people’s life tremendously, but also ruin the local eco-environment. These phenomenons (disasters) should be controlled and rehabilitated. For this purpose, in this paper, the characteristic and values of surface subsidence, deformation and movements were evaluated and calculated using some kinds of technological theories and methodology such as probability integral method and so on. Based on the Google Earth image and digital relief maps as well as the predicted results and data, several types of 3D thematic maps of mining subsidence and deformation were designed and mapped in order to carry on the land reclamation or rehabilitation in the mining subsidence and deformation areas. The research results can be fitted well with the reality of surface subsidence and deformations.

2012 ◽  
Vol 500 ◽  
pp. 428-436 ◽  
Author(s):  
Ke Ming Yang ◽  
Jun Ting Ma ◽  
Bo Pang ◽  
Yi Bin Wang ◽  
Ran Wang ◽  
...  

Mining subsidence often produces significant horizontal and vertical movements at the ground surface, the surface deformation induced by underground coal mining can be predicted by probability integral method, and the surface geo-deformation disasters can be visualized based on GIS components. A three dimensional (3D) visualizing system of surface geo-deformation information is designed and developed with ArcGIS Engine and C# in the study. According to the surface deformation-predicted data induced by underground coal mining in Guobei Coalmine of Huaibei mine field, the extents and degrees of ground deformation disasters are visualized in 3D views for surface vertical subsidence, slope, curvature, horizontal displacement and horizontal strain based on the GIS-developed application platform.


2020 ◽  
Vol 12 (4) ◽  
pp. 1528 ◽  
Author(s):  
Ximin Cui ◽  
Yuling Zhao ◽  
Guorui Wang ◽  
Bing Zhang ◽  
Chunyi Li

Exhausted or abandoned underground longwall mining may lead to long-term residual subsidence on surface land, which can cause some problems when the mined-out land is used for construction, land reclamation and ecological reconstruction. Thus, it is important to assess the stability and suitability of the land with a consideration of residual surface subsidence. Assuming a linear monotonic decrease in the annual residual surface subsidence, the limit of the sum of the annual residual subsidence factor, and continuity between surface subsidence in the last year of the weakening period and the residual surface subsidence in the first year, we establish a model to calculate the duration of residual subsidence and the annual residual surface subsidence factor caused by abandoned longwall coal mining. The duration of residual surface subsidence increases with the increase in mining thickness as well as the factor of extreme residual subsidence. The proposed method can quantitatively calculate the annual residual subsidence, the accumulative residual subsidence, and the potential future accumulative residual subsidence. This approach can be used to reasonably evaluate the stability and suitability of old mining subsidence areas and will be beneficial for the design of mining subsidence land reclamation and ecological reconstruction.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Ping Xu ◽  
Minxia Zhang ◽  
Zhibin Lin ◽  
Zhengzheng Cao ◽  
Xu Chang

Buried pipelines influenced by coal mining subsidence will deform and generate additional stress during surface deformation. On the basis of the coordinating deformation relationship between buried pipeline and its surrounding soils, a stress analysis method of a buried pipeline induced by mining was proposed. The buried pipeline additional stresses were analyzed; meanwhile, a corresponding analysis process of the pipeline stresses was also presented during mining subsidence. Furthermore, based on the ground subsidence along the pipeline predicted in advance by the probability integral method, the additional stresses and Von Mises equivalent stresses and their distributions along the buried pipeline induced by the exploitation of a coal mining working face named 14101 were obtained. Meanwhile, a comparative analysis of additional stresses between simulation and analytical calculation was performed for the deep analysis and reliability of the results presented by the proposed methodology in this paper. The proposed method provides references for analysis of the additional stress and safety of buried pipelines under the influence of mining subsidence.


2011 ◽  
Vol 383-390 ◽  
pp. 2201-2205
Author(s):  
Xin Xi Liu ◽  
Xue Zhi Wang

Analysis on the characters of ground subsidence of Yangjiaping mining area, with same excavation depth and recovery coefficient, the numerical simulations to nonlinear large deformation using finite-difference method(FLAC) are achieved on the different strip extraction schemes that adopted different mining and reservation width. The result indicates that the subsidence values and horizontal deformation increases with the increasing of the strip extraction width on condition of the same recovery rate. Based on probability density function (PDF) method, the relationship of the coal pillar width, the mining width and ground deformation is acquired, which is some useful reference for using the strip extraction method to control the surface movement and deformation.


2020 ◽  
Author(s):  
Chuanguang Zhu ◽  
Wenhao Wu ◽  
Mahdi Motagh ◽  
Liya Zhang ◽  
Zongli Jiang ◽  
...  

Abstract. The Heze section of Rizhao-Lankao High-speed Railway (RLHR-HZ) has been under construction since 2018 and will be operative by the end of 2021. However, there is a concern that land subsidence in Heze region may affect the normal operation of RLHR-HZ. In this study, we investigate the contemporary ground deformation in the region between 2015 and 2019 by using more than 350 C-band interferograms constructed from two tracks of Sentine-1 data over the region. The Small Baselines Subset (SBAS) technique is adopted to compile the time series displacement. We find that the RLHR-HZ runs through two main subsidence areas: One is located east of Heze region with rates ranging from −4 cm/yr to −1 cm/yr, and another one is located in the coal field with rates ranging from −8 cm/yr to −2 cm/yr. A total length of 35 km of RLSR-HZ are affected by the two subsidence basins. Considering the previous investigation and the monthly precipitation, we infer that the subsidence bowl east of Heze region is due to massive extraction of deep groundwater. Close inspections of the relative locations between the second subsidence area and the underground mining reveals that the subsidence there is probably caused by the groundwater outflow and fault instability due to mining, rather than being directly caused by mining. The InSAR-derived ground subsidence implies that it's necessary to continue monitoring the ground deformation along RLSR-HZ.


2020 ◽  
Vol 12 (10) ◽  
pp. 1612 ◽  
Author(s):  
Wu Xiao ◽  
Xinyu Deng ◽  
Tingting He ◽  
Wenqi Chen

The development and utilization of mining resources are basic requirements for social and economic development. Both open-pit mining and underground mining have impacts on land, ecology, and the environment. Of these, open-pit mining is considered to have the greatest impact due to the drastic changes wrought on the original landform and the disturbance to vegetation. As awareness of environmental protection has grown, land reclamation has been included in the mining process. In this study, we used the Shengli Coalfield in the eastern steppe region of Inner Mongolia to demonstrate a mining and reclamation monitoring process. We combined the Google Earth Engine platform with time series Landsat images and the LandTrendr algorithm to identify and monitor mining disturbances to grassland and land reclamation in open-pit mining areas of the coalfield between 2003 and 2019. Pixel-based trajectories were used to reconstruct the temporal evolution of vegetation, and sequential Landsat archive data were used to achieve accurate measures of disturbances to vegetation. The results show that: (1) the proposed method can be used to determine the years in which vegetation disturbance and recovery occurred with accuracies of 86.53% and 78.57%, respectively; (2) mining in the Shengli mining area resulted in the conversion of 89.98 km2 of land from grassland, water, etc., to barren earth, and only 23.54 km2 was reclaimed, for a reclamation rate of 26.16%; and (3) the method proposed in this paper can achieve fast, efficient identification of surface mining land disturbances and reclamation, and has the potential to be applied to other similar areas.


2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Yonghong Zhang ◽  
Hongan Wu ◽  
Mingju Li ◽  
Yonghui Kang ◽  
Zhong Lu

Interferometric synthetic aperture radar (InSAR) mapping of localized ground surface deformation has become an important tool to manage subsidence-related geohazards. However, monitoring land surface deformation using InSAR at high spatial resolution over a large region is still a formidable task. In this paper, we report a research on investigating ground subsidence and the causes over the entire 107, 200 km2 province of Jiangsu, China, using time-series InSAR. The Sentinel-1 Interferometric Wide-swath (IW) images of 6 frames are used to map ground subsidence over the whole province for the period 2016–2018. We present processing methodology in detail, with emphasis on the three-level co-registration scheme of S-1 data, retrieval of mean subsidence velocity (MSV) and subsidence time series, and mosaicking of multiple frames of results. The MSV and subsidence time series are generated for 9,276,214 selected coherent pixels (CPs) over the Jiangsu territory. Using 688 leveling measurements in evaluation, the derived MSV map of Jiangsu province shows an accuracy of 3.9 mm/year. Moreover, subsidence causes of the province are analyzed based on InSAR-derived subsidence characteristics, historical optical images, and field-work findings. Main factors accounting for the observed subsidence include: underground mining, groundwater withdrawal, soil consolidations of marine reclamation, and land-use transition from agricultural (paddy) to industrial land. This research demonstrates not only the capability of S-1 data in mapping ground deformation over wide areas in coastal and heavily vegetated region of China, but also the potential of inferring valuable knowledge from InSAR-derived results.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 945
Author(s):  
Shuaigang Liu ◽  
Jianbiao Bai ◽  
Gongyuan Wang ◽  
Xiangyu Wang ◽  
Bowen Wu

The traditional backfill mining method is a technology developed by the general trend of green coal mining, but with a high cost and an impact on production efficiency. This paper proposes a structured backfill mining method with high-water materials and pillars. The evolution of roof pressure appearance is assessed through the sensor and monitoring system in the hydraulic support. The main roof fracture step distance is determined based on the roof structure characteristics of backfill mining, and the backfill step distance of underground structural backfill is 22.7 m considering the safety factor. Through the simulation results of Abaqus commercial simulation software, the roof subsidence evolution of different backfill schemes under temporary load and permanent load is compared, and the rationality of the backfill step distance is verified. Based on the probability integral method, the surface subsidence prediction model is proposed, then the final value and the maximum dynamic change value of the surface subsidence at the north and south ends of the interchange bridge by traditional mining and backfill mining are analyzed, which verifies the rationality of the structural backfill mining method.


2012 ◽  
Vol 256-259 ◽  
pp. 15-18
Author(s):  
Shi Bo Li ◽  
Hong Jian Lu

Weibull distribution was applied to calculate the ground subsidence and deflection value, in order to analysis accurately the influence of ground subsidence caused by underground mining on high voltage electric power lines. The results showed that the effect of reducing surface subsidence was notable and the high power line was working normally. It was accurate enough to calculate ground deformation by using Weibull distribution, and Matlab program can be used to solve the function feasibly.


Sign in / Sign up

Export Citation Format

Share Document