An experimental and analytical study on strength and deformation capacity of anchor system of metal liners under impact loading

2010 ◽  
Vol 163-167 ◽  
pp. 1510-1514 ◽  
Author(s):  
Rui Pang ◽  
Shu Ting Liang ◽  
Xiao Jun Zhu ◽  
Yao Meng

Detailed formation of precast floor slab connectors has significant effect on their shear capacity, but there is no such specific provision on it at present. The effects of detailed formations on the shear strength, stiffness and deformation capacity of hairpin connectors(HPC) were studied, through numerical simulation analysis under in-plane shear force. The imbedded depth (d), slug length (h), steel plate thickness (t) and its stickout(s) were taken as parameters. The analysis results show that: ⅰ) the increase of imbedded depth can improve the bearing capacity and stiffness of HPC, but decrease the deformation capacity; ⅱ) with the increase of slug length, the HPC strength, stiffness and deformation capacity raised a lot; ⅲ) the steel plates’ thickness has small effect on the stiffness, but has strong impact on the strength and deformation capacity of HPC. ⅳ) the stickout can affect the initial stiffness and yield strength of HPC slightly, but has a considerable impact on its ultimate strength and deformation capacity. On the basis of analysis, recommendations on formation details of HPC are proposed for design and construction.


2019 ◽  
Vol 15 (1) ◽  
pp. 65-83
Author(s):  
Rana Faisal Tufail ◽  
Xiong Feng ◽  
Muhammad Zahid

Abstract The use of rubberized concrete (RuC) is an effective environmental approach to reduce the amount of scrap tires around the world. However, there are serious concerns regarding the compressive strength of RuC. This article investigates the use of externally bonded carbon fiber reinforced polymer (CFRP) jackets on RuC to develop a novel high strength and deformable CFRP confined RuC. In this study, 66 RuC cylinders were cast with 0, 10, 20, 30, 40 and 50% fine or coarse rubber to replace mineral aggregates. The RuC cylinders were then confined with one, two or three layers of CFRP jackets. The results indicated 208% high lateral strains in unconfined RuC as compared to the conventional concrete. CFRP jacketing was highly effective for enhancing the compressive strength and deformation capacity of RuC, where high compressive strength enhancement of 52 MPa and deformation capacity (317% axial strain) was achieved. The confined compressive strength test results were compared with the strength models to assess their validity for CFRP confined RuC. An analysis-oriented strength model was developed to predict the axial compressive strength of RuC confined by CFRP jackets. Overall, this study demonstrated the potential of using CFRP-confined RuC as a new structural material with improved strength and deformation.


2015 ◽  
Vol 25 (3) ◽  
pp. 212-220 ◽  
Author(s):  
Erik Levold ◽  
Andrea Restelli ◽  
Lorenzo Marchionni ◽  
Luigino Vitali ◽  
Caterina Molinari ◽  
...  

Author(s):  
Erik Levold ◽  
Andrea Restelli ◽  
Lorenzo Marchionni ◽  
Caterina Molinari ◽  
Luigino Vitali

Considering the future development for offshore pipelines, moving towards difficult operating condition and deep/ultra-deep water applications, there is the need to understand the failure mechanisms and better quantify the strength and deformation capacity of corroded pipelines considering the relevant failure modes (collapse, local buckling under internal and external pressure, fracture / plastic collapse etc.). A Joint Industry Project sponsored by ENI E&P and Statoil has been launched with the objective to quantify and assess the strength and deformation capacity of corroded pipes in presence of internal overpressure and axial/bending loading. In this paper: • The State-of-the-Art on strength and deformation capacity of corroded pipes is presented; • The full-scale laboratory tests on corroded pipes under bending moment dominated load conditions, performed at C-FER facilities, are shown together with the calibrated ABAQUS FE Model; • The results of the ABAQUS FEM parametric study are presented.


Author(s):  
Alberto Battistini ◽  
Luca Catena ◽  
Adelina Mancini ◽  
Lorenzo Marchionni ◽  
Antonio Parrella ◽  
...  

Concrete Weight Coating is used in offshore industry to provide for pipeline vertical and lateral stability against waves and currents and to guarantee protection against fishing activities. Reinforced concrete coating of adequate strength, especially in case of thick coatings for stringent in-place stability requirements, entails additional bending stiffness and consequently strain concentration at field joints, thus significantly affecting the state of stress and strain on the pipe steel during laying firstly, and then during operations. Attention of the offshore pipeline industry has been focused in the development of experimental and theoretical activities in a more scientific way, which aimed to satisfy the need of a better knowledge in this field. Both analytical and FEM solutions are available in the free literature and relevant standards to predict the contribution of concrete coating layer on global pipeline strength and deformation capacity and simplified threshold values for the concrete damage are provided, as well. Generally, for installation analysis purpose, a pipeline with equivalent mechanical behavior (bending moment-curvature relationship) and physical (weight) properties is used in installation and operation analyses. No assumptions are typically made on concrete damage evolution to evaluate the decay of pipe capacity beyond the elastic range. In this paper new advances in modelling the mechanical behavior of concrete coated joints are discussed. In particular an advanced ABAQUS finite element model is proposed to take into account the effect of concrete coating damage on the overall capacity. The following effects have been accounted: • Non-linear stress-strain relationship of the steel at large usage factors/curvatures on the strain concentration at the field joint. • Concrete coating damage evolution on global pipeline bending stiffness. In this paper: • The state-of-the-art about published materials, numerical studies and design approaches on concrete material modelling and concrete coated pipes is briefly presented; • A FEM based analysis methodology is drawn and proposed for the strength and deformation capacity assessment of a concrete coated pipe; • The FEM model is calibrated on available full scale tests; • The results of a project case study performed with ABAQUS FE Model are given.


2012 ◽  
Vol 450-451 ◽  
pp. 805-808
Author(s):  
Jian Bin Geng ◽  
Zhi Xing Zeng

Presently large amount of slurry are generated in natural stone processing plants with an important on the environment and humans. But relative to normal concrete, the Recycled Aggregate Concrete (RAC) has unstable properties and weaker strength. Such inadequacies can be overcome though applied the confinement to the RAC. In this paper, several reinforcement systems are introduced to be used in the RAC. Analysis showed that the strength and deformation capacity are highly increased, while the shrinkage is reduced and deformation is obviously improved.


2018 ◽  
Vol 24 (56) ◽  
pp. 165-170
Author(s):  
Masato NAKAO ◽  
Terusato INOUE ◽  
Kazuhiro INAGAKI ◽  
Yasunari UMEDA ◽  
Toyoshige YAMANAKA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document