scholarly journals Behavior of unconfined and CFRP confined rubberized concrete

2019 ◽  
Vol 15 (1) ◽  
pp. 65-83
Author(s):  
Rana Faisal Tufail ◽  
Xiong Feng ◽  
Muhammad Zahid

Abstract The use of rubberized concrete (RuC) is an effective environmental approach to reduce the amount of scrap tires around the world. However, there are serious concerns regarding the compressive strength of RuC. This article investigates the use of externally bonded carbon fiber reinforced polymer (CFRP) jackets on RuC to develop a novel high strength and deformable CFRP confined RuC. In this study, 66 RuC cylinders were cast with 0, 10, 20, 30, 40 and 50% fine or coarse rubber to replace mineral aggregates. The RuC cylinders were then confined with one, two or three layers of CFRP jackets. The results indicated 208% high lateral strains in unconfined RuC as compared to the conventional concrete. CFRP jacketing was highly effective for enhancing the compressive strength and deformation capacity of RuC, where high compressive strength enhancement of 52 MPa and deformation capacity (317% axial strain) was achieved. The confined compressive strength test results were compared with the strength models to assess their validity for CFRP confined RuC. An analysis-oriented strength model was developed to predict the axial compressive strength of RuC confined by CFRP jackets. Overall, this study demonstrated the potential of using CFRP-confined RuC as a new structural material with improved strength and deformation.

Author(s):  
Rana Faisal Tufail ◽  
Xiong Feng ◽  
Danish Farooq ◽  
Nabil Abdelmelek ◽  
Éva Lublóy

This paper presents experimental versus theoretical comparison of carbon fiber reinforced polymer (CFRP) confined rubberized concrete (a new structural material). A total of sixty six rubberized concrete cylinders were tested in axial compression. The specimens were cast using 0 to 50% rubber replacement. Twenty seven cylinders were then confined with one, two and three layers of CFRP jackets. Axial compression results of the experimental study were compared with the North American and European design guidelines. The results indicate that the addition of rubber content in the concrete leads to premature micro cracking and lateral expansion in concrete. This increased lateral dilation exploited the potential of FRP jackets. The axial compressive strength and strain values for CFRP confined RuC cylinders reached up to unprecedented 600 and 330 percent of unconfined samples. Furthermore, the current international design guidelines developed for conventional concrete confinement failed to predict the compressive strength of rubberized concrete. There is a strong need to re-evaluate the current design codes and their applicability to investigate fiber reinforced confined rubberized concrete. Moreover, the proposed equations in this research can better predict the axial compressive strength of FRP confined RuC.


2019 ◽  
Vol 27 ◽  
pp. 39-51
Author(s):  
Kamrun N. Keya ◽  
Alamgir Habib ◽  
Sampa Akhter ◽  
Hasan M. Tamim ◽  
Maksuda Akhter

Polymer concrete is one kind of which is used as an additive of the binding material. Due to their high thermal stability, tensile and flexural strengths, high compressive strength and resistance to chemical, its popularity increasing rapidly and which is now widely used as a construction material. This paper explores a research study that has been establishing a standard correlation between concrete compressive strength with the amount of polymers and other ingredients. Hence a comparison was made between the conventional concrete and polymer concrete. As per ASTM C31, the mix design of polymer concrete is calculated and estimated the material quantity. In this research, a total of twenty-two trail mixes of polymer concrete were prepared with different amount of epoxy resin and hardener. In implementation of experimental program compressive strength test was performed for conventional concrete, polymer resin (epoxy resin) concrete with resin percentage 10%, 12%, 15%, 17% and 20% was performed and compared the results with polymer concrete (no-fly ash) with polymer concrete (fly ash) percentage 15%. It was found that the compressive strength of the polymer concrete was increased with increasing the percentage of a polymer. Compressive strength of the 17% and 20% polymer resin-based polymer concrete was 46.75 MPa and 48.32 MPa and cost was around 1,17,110.00 TK and 1,37,152.00 TK; respectively and also it was observed that by using fly ash the strength of the concrete could be increased significantly. It can be said that higher strength can be achieved with a comparatively high cost. However, the cost can be reduced by proper materials selection, mix ratio, curing and adequate quality control of the material.


2014 ◽  
Vol 69 (3) ◽  
Author(s):  
Hoong-Pin Lee ◽  
Abdullah Zawawi Awang ◽  
Wahid Omar

An experimental and analytical study on the application of Steel Strapping Tensioning Technique (SSTT) confinement on twelve high-strength concrete cylinder specimens with dimension of 100 mm and 200 mm in diameter and height respectively has been studied and presented throughout this paper. The specimens were volumetric-identically confined with two different confining materials of different mechanical properties and lateral pre-tensioning stresses, namely SSTT(HC) and SSTT(SS). All concrete specimens were tested under uniaxial compression load. The performance of SSTT-type confined specimens were studied through their stress-strain relationship upon the longitudinal and transverse deformation, mode of failure, level of lateral pre-tensioning stress, and dilatancy behaviour. The results show that high-strength concretes confined with SSTT would significantly reduce the brittleness problem and at the same time, enhancing both ultimate compressive strength and ductility up to 65% and 344%, 36% and 269% for both SSTT(HC) and SSTT(SS), respectively. Those specimens confined with higher lateral pre-tensioning stress exhibits smaller radial expansion and higher rate of axial strain, able to slow down the dilation of confined specimens under loading and thus, helps in enhancing the compressive capacity and ductility. In addition, an analytical comparison between SSTT-type confinement and conventional confinement models have been presented and the results show a linear relationship between the compressive strength enhancement and confinement ratio. Current experimental results were also validated by comparing the observed stress-strain relationship proposed by Mander. 


2011 ◽  
Vol 130-134 ◽  
pp. 1621-1625
Author(s):  
Hua Xin Liu ◽  
Dong Ming Wang

The technology of GFRP has received significant attentions in civil engineering due to their unique properties, such as high strength-to-weight radio, good resistance to corrosion and fatigue, convenient to construction and no additional dimension. Study the properties of GFRP confining concrete column through eight groups of columns subjected to axial loading, the effect of width of straps and spacing of straps of GFRP sheets confining concrete column is analyesed. The results are the axial compressive strength and ductility of concrete prism wrapped by GFRP sheets or GFRP straps have all increased to a certain degree, the process of destruction of concrete prism wrapped by GFRP become slower than common concrete prism.


2017 ◽  
Vol 865 ◽  
pp. 289-294
Author(s):  
Xi Ri Kang ◽  
Guang Xiu Fang

This test uses polycarboxylate superplasticizer by adding 15% quantitative fly ash, 10%, 15%, 20% of slag, and 5%,7.5%, 10% of silica fume of the total amount of the cementitious material to be an equivalent replacement for cement. Ordinary materials were used to make the C70 high strength self-compacting concrete. The concrete slump, expansion degree, and the axial compressive strength of concrete were studied. Through testing, the mix proportion of each group of concrete slump was determined to be above 250mm. And the expansion degree to be above 550mm. The axial compressive strength satisfied the design strength value. At the same time, the optimal mix ratio was proposed. And the economic performance of each group was analyzed. There are references for a similar experimental design and engineering application.


2011 ◽  
Vol 368-373 ◽  
pp. 410-414 ◽  
Author(s):  
Hong Zhen Kang ◽  
Lei Yao ◽  
Xi Min Song ◽  
Ying Hua Ye

To study axial compressive strength of high strength concrete-filled steel tube composite columns, tests of 18 specimens were carried out. Parameters of the specimens were the confinement index of concrete-filled steel tube, the cubic strength and the stirrup characteristic value of concrete outer of steel tube. Test results show that the concrete-filled steel tube and the reinforced concrete deformed simultaneously in the axial direction before and at the peak value of axial compressive force; after failure of the reinforced concrete, the concrete-filled steel tube can still bear the axial load and deformation; the main influential factors of axial compressive capacity are confinement index, the cubic strength and the stirrup characteristic value of concrete outer of steel tube. The accuracy of the formula of axial compressive strength of composite columns provided by CECS 188:2005 is proved by the test results of this paper.


2013 ◽  
Vol 639-640 ◽  
pp. 1083-1086
Author(s):  
Xiao Kun Wang ◽  
Hua Xin Liu ◽  
Xue Zhi Wang ◽  
Cheng Zhai

More attention has been paid on the technology of BFRP in civil engineering due to it’s unique properties, such as high strength-to-weight radio, good resistance to corrosion and convenient to construction. In order to study the properties of BFRP sheets confined concrete column ,we did it through three groups of columns subjected to axial loading tests and FEM analyses, mainly considering the effect of spacing of straps of BFRP sheets confining concrete column.The results shows that the axial compressive strength and ductility of concrete column winded by BFRP straps have all increased and the process of destruction of concrete column wrapped by BFRP is longer than that of the unconfined concrete column.


In this investigation, conventional concrete was made with replacing the sand by 80 % of M-sand and the cement by fillet material silica fume in varying percentages say 5%, 10 % , and 15%, to study the compressive strength, split tensile strength and flexural strength. In order to the maximum strength was attained at 10% of silica fume. The result showed that by increasing the silica fume content, the strength of the M-sand concrete was decreased because higher fineness of silica fume content decreases the strength of the M-sand concrete. Secondly polymer concrete with unsaturated polyester resin with hardener MEKP, Cobalt as the accelerator and silica fume in varying percentages say 0%, 5% and 10% was made to study the compressive strength and split tensile strength of polymer concrete. In improved silica fume content the strength was high. Polymer concrete improved the mechanical properties. Polymer concrete system was mainly useful to fill the micro voids. In this research, the maximum strength was attained at 5% of silica fume filler added with polymer concrete. Thus the high strength of the concrete was obtained due to the pozzolanic reaction with the silica fume.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
D. S. Vijayan ◽  
A. Mohan ◽  
J. Jebasingh Daniel ◽  
V. Gokulnath ◽  
B. Saravanan ◽  
...  

An ecofriendly fiber reinforced polymer (FRP) had been used in the last decade to enhance the short concrete column’s strength and deformation capacity. This study involves the wrapping of FRP sheets with a thickness of 3 mm and 5 mm on a short column, and then the compressive strength is determined. The rectangular columns of size 150 mm × 300 mm are used for this study, and cast under the grades of M20 and M40 are wrapped with GFRP sheets at the thickness of 3 mm and 5 mm. These results are clarified at a specific thickness of the FRP-wrapped columns. It provides a maximum axial compressive strength, and Young’s modulus gets enhanced rigorously when it is to be compared to the normal concrete. This thesis deals with experimental studies of different parameters associated with wrapped glass fiber reinforced polymer (GFRP). In M20 grade, when the 3 mm wrapped specimen and the 5 mm wrapped specimen are compared, the specimen wrapped with 5 mm increases 5.182% more than the specimen wrapped with 3 mm. In M40 grade, when the 0 mm, 3 mm, and 5 mm wrapped specimens are compared, the specimen wrapped with 5 mm increases 2.47% more than the specimen wrapped with 0 mm. The 5 mm wrapping attains the maximum strength.


Sign in / Sign up

Export Citation Format

Share Document