Changes in the numbers of optic nerve fibers during late prenatal and postnatal development in the albino rat

1985 ◽  
Vol 19 (1) ◽  
pp. 129-134 ◽  
Author(s):  
Damaso Crespo ◽  
Dennis D.M. O'Leary ◽  
W. Maxwell Cowan
2019 ◽  
Vol 25 (28) ◽  
pp. 3057-3073 ◽  
Author(s):  
Kobra B. Juybari ◽  
Azam Hosseinzadeh ◽  
Habib Ghaznavi ◽  
Mahboobeh Kamali ◽  
Ahad Sedaghat ◽  
...  

Optic neuropathies refer to the dysfunction or degeneration of optic nerve fibers caused by any reasons including ischemia, inflammation, trauma, tumor, mitochondrial dysfunction, toxins, nutritional deficiency, inheritance, etc. Post-mitotic CNS neurons, including retinal ganglion cells (RGCs) intrinsically have a limited capacity for axon growth after either trauma or disease, leading to irreversible vision loss. In recent years, an increasing number of laboratory evidence has evaluated optic nerve injuries, focusing on molecular signaling pathways involved in RGC death. Trophic factor deprivation (TFD), inflammation, oxidative stress, mitochondrial dysfunction, glutamate-induced excitotoxicity, ischemia, hypoxia, etc. have been recognized as important molecular mechanisms leading to RGC apoptosis. Understanding these obstacles provides a better view to find out new strategies against retinal cell damage. Melatonin, as a wide-spectrum antioxidant and powerful freeradical scavenger, has the ability to protect RGCs or other cells against a variety of deleterious conditions such as oxidative/nitrosative stress, hypoxia/ischemia, inflammatory processes, and apoptosis. In this review, we primarily highlight the molecular regenerative and degenerative mechanisms involved in RGC survival/death and then summarize the possible protective effects of melatonin in the process of RGC death in some ocular diseases including optic neuropathies. Based on the information provided in this review, melatonin may act as a promising agent to reduce RGC death in various retinal pathologic conditions.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 169
Author(s):  
Jacqueline Reinhard ◽  
Susanne Wiemann ◽  
Sebastian Hildebrandt ◽  
Andreas Faissner

Glaucoma is a neurodegenerative disease that is characterized by the loss of retinal ganglion cells (RGC) and optic nerve fibers. Increased age and intraocular pressure (IOP) elevation are the main risk factors for developing glaucoma. Mice that are heterozygous (HET) for the mega-karyocyte protein tyrosine phosphatase 2 (PTP-Meg2) show chronic and progressive IOP elevation, severe RGCs loss, and optic nerve damage, and represent a valuable model for IOP-dependent primary open-angle glaucoma (POAG). Previously, evidence accumulated suggesting that glaucomatous neurodegeneration is associated with the extensive remodeling of extracellular matrix (ECM) molecules. Unfortunately, little is known about the exact ECM changes in the glaucomatous retina and optic nerve. Hence, the goal of the present study was to comparatively explore ECM alterations in glaucomatous PTP-Meg2 HET and control wild type (WT) mice. Due to their potential relevance in glaucomatous neurodegeneration, we specifically analyzed the expression pattern of the ECM glycoproteins fibronectin, laminin, tenascin-C, and tenascin-R as well as the proteoglycans aggrecan, brevican, and members of the receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) family. The analyses were carried out in the retina and optic nerve of glaucomatous PTP-Meg2 HET and WT mice using quantitative real-time PCR (RT-qPCR), immunohistochemistry, and Western blot. Interestingly, we observed increased fibronectin and laminin levels in the glaucomatous HET retina and optic nerve compared to the WT group. RT-qPCR analyses of the laminins α4, β2 and γ3 showed an altered isoform-specific regulation in the HET retina and optic nerve. In addition, an upregulation of tenascin-C and its interaction partner RPTPβ/ζ/phosphacan was found in glaucomatous tissue. However, comparable protein and mRNA levels for tenascin-R as well as aggrecan and brevican were observed in both groups. Overall, our study showed a remodeling of various ECM components in the glaucomatous retina and optic nerve of PTP-Meg2 HET mice. This dysregulation could be responsible for pathological processes such as neovascularization, inflammation, and reactive gliosis in glaucomatous neurodegeneration.


1988 ◽  
Vol 1 (2) ◽  
pp. 245-248 ◽  
Author(s):  
Glen T. Prusky ◽  
Max S. Cynader

AbstractThe autoradiographic distribution of [3H]nicotine binding sites was examined in the superior colliculus in normal rats and cats, and in animals in which one or both eyes were removed. [3H]Nicotine binding sites in normal animals were densely concentrated in the superficial layers of the colliculus corresponding to the zone of termination of optic nerve fibers. Following bilateral enucleation, [3H]nicotine binding in the superficial collicular layers was drastically reduced. Unilateral enucleation markedly reduced [3H]nicotine binding sites in the colliculus contralateral to the removed eye, with little effect on the ipsilateral colliculus. These results provide further evidence that nicotinic acetylcholine receptors have a presynaptic location on optic tract terminals and may therefore modulate retinotectal transmission in both the rat and cat visual system.


2001 ◽  
Vol 353 (3) ◽  
pp. 673 ◽  
Author(s):  
Steven HUYGHE ◽  
Minne CASTEELS ◽  
Anneleen JANSSEN ◽  
Liesbeth MEULDERS ◽  
Guy P. MANNAERTS ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document