3-methylquercetin prevents synthesis of negatively stranded viral RNA in poliovirus infected cells

1988 ◽  
Vol 9 (1-2) ◽  
pp. 103
Keyword(s):  
BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 376-379
Author(s):  
Nora Schmidt ◽  
Mathias Munschauer

AbstractUsing RNA antisense purification and mass spectrometry, we identified more than 100 human proteins that directly and specifically bind SARS-CoV-2 RNA in infected cells. To gain insights into the functions of selected RNA interactors, we applied genetic perturbation and pharmacological inhibition experiments, and mapped the contact sites on the viral RNA. This led to the identification of host dependency factors and defense strategies, which can guide the design of novel therapeutics against SARS-CoV-2.


2020 ◽  
Vol 22 (1) ◽  
pp. 58
Author(s):  
Thomas Gremminger ◽  
Zhenwei Song ◽  
Juan Ji ◽  
Avery Foster ◽  
Kexin Weng ◽  
...  

The reverse transcription of the human immunodeficiency virus 1 (HIV-1) initiates upon annealing of the 3′-18-nt of tRNALys3 onto the primer binding site (PBS) in viral RNA (vRNA). Additional intermolecular interactions between tRNALys3 and vRNA have been reported, but their functions remain unclear. Here, we show that abolishing one potential interaction, the A-rich loop: tRNALys3 anticodon interaction in the HIV-1 MAL strain, led to a decrease in viral infectivity and reduced the synthesis of reverse transcription products in newly infected cells. In vitro biophysical and functional experiments revealed that disruption of the extended interaction resulted in an increased affinity for reverse transcriptase (RT) and enhanced primer extension efficiency. In the absence of deoxyribose nucleoside triphosphates (dNTPs), vRNA was degraded by the RNaseH activity of RT, and the degradation rate was slower in the complex with the extended interaction. Consistently, the loss of vRNA integrity was detected in virions containing A-rich loop mutations. Similar results were observed in the HIV-1 NL4.3 strain, and we show that the nucleocapsid (NC) protein is necessary to promote the extended vRNA: tRNALys3 interactions in vitro. In summary, our data revealed that the additional intermolecular interaction between tRNALys3 and vRNA is likely a conserved mechanism among various HIV-1 strains and protects the vRNA from RNaseH degradation in mature virions.


1979 ◽  
Vol 57 (6) ◽  
pp. 902-913 ◽  
Author(s):  
Patrick W. K. Lee ◽  
John S. Colter

Studies of the synthesis of viral ribonucleates and polypeptides in cells infected with two RNA−ts mutants of Mengo virus (ts 135 and ts 520) have shown that when ts 135 infected cells are shifted from the permissive (33 °C) to the nonpermissive (39 °C) temperature: (i) the synthesis of all three species of viral RNA (single stranded, replicative form, and replicative intermediate) is inhibited to about the same extent, and (ii) the posttranslational cleavage of structural polypeptide precursors A and B is partially blocked. Investigations of the in vivo and in vitro stability of the viral RNA replicase suggest that the RNA− phentotype reflects a temperature-sensitive defect in the enzyme. The second defect does not appear to result from the inhibition of viral RNA synthesis at 39 °C, since normal cleavage of polypeptides A and B occurs in wt Mengo-infected cells in which viral RNA synthesis is blocked by cordycepin, and at the nonpermissive temperature in ts 520 infected cells. Considered in toto, the evidence suggests that ts 135 is a double mutant.Subviral (53 S) particles have been shown to accumulate in ts 520 (but not ts 135) infected cells when cultures are shifted from 33 to 39 °C. This observation provides supporting evidence for the proposal that this recently discovered particle is an intermediate in the assembly pathway of Mengo virions.


2006 ◽  
Vol 81 (3) ◽  
pp. 1339-1349 ◽  
Author(s):  
Tadasuke Naito ◽  
Fumitaka Momose ◽  
Atsushi Kawaguchi ◽  
Kyosuke Nagata

ABSTRACT Transcription and replication of the influenza virus RNA genome occur in the nuclei of infected cells through the viral RNA-dependent RNA polymerase consisting of PB1, PB2, and PA. We previously identified a host factor designated RAF-1 (RNA polymerase activating factor 1) that stimulates viral RNA synthesis. RAF-1 is found to be identical to Hsp90. Here, we examined the intracellular localization of Hsp90 and viral RNA polymerase subunits and their molecular interaction. Hsp90 was found to interact with PB2 and PB1, and it was relocalized to the nucleus upon viral infection. We found that the nuclear transport of Hsp90 occurs in cells expressing PB2 alone. The nuclear transport of Hsp90 was in parallel with that of the viral RNA polymerase binary complexes, either PB1 and PB2 or PB1 and PA, as well as with that of PB2 alone. Hsp90 also interacted with the binary RNA polymerase complex PB1-PB2, and it was dissociated from the PB1-PB2 complex upon its association with PA. Furthermore, Hsp90 could form a stable PB1-PB2-Hsp90 complex prior to the formation of a ternary polymerase complex by the assembly of PA in the infected cells. These results suggest that Hsp90 is involved in the assembly and nuclear transport of viral RNA polymerase subunits, possibly as a molecular chaperone for the polymerase subunits prior to the formation of a mature ternary polymerase complex.


1988 ◽  
Vol 8 (4) ◽  
pp. 1558-1569
Author(s):  
P E Cizdziel ◽  
M de Mars ◽  
E C Murphy

The spliced form of MuSVts110 viral RNA is approximately 20-fold more abundant at growth temperatures of 33 degrees C or lower than at 37 to 41 degrees C. This difference is due to changes in the efficiency of MuSVts110 RNA splicing rather than selective thermolability of the spliced species at 37 to 41 degrees C or general thermosensitivity of RNA splicing in MuSVts110-infected cells. Moreover, RNA transcribed from MuSVts110 DNA introduced into a variety of cell lines is spliced in a temperature-sensitive fashion, suggesting that the structure of the viral RNA controls the efficiency of the event. We exploited this novel splicing event to study the cleavage and ligation events during splicing in vivo. No spliced viral mRNA or splicing intermediates were observed in MuSVts110-infected cells (6m2 cells) at 39 degrees C. However, after a short (about 30-min) lag following a shift to 33 degrees C, viral pre-mRNA cleaved at the 5' splice site began to accumulate. Ligated exons were not detected until about 60 min following the initial detection of cleavage at the 5' splice site, suggesting that these two splicing reactions did not occur concurrently. Splicing of viral RNA in the MuSVts110 revertant 54-5A4, which lacks the sequence -AG/TGT- at the usual 3' splice site, was studied. Cleavage at the 5' splice site in the revertant viral RNA proceeded in a temperature-sensitive fashion. No novel cryptic 3' splice sites were activated; however, splicing at an alternate upstream 3' splice site used at low efficiency in normal MuSVts110 RNA was increased to a level close to that of 5'-splice-site cleavage in the revertant viral RNA. Increased splicing at this site in 54-5A4 viral RNA is probably driven by the unavailability of the usual 3' splice site for exon ligation. The thermosensitivity of this alternate splice event suggests that the sequences governing the thermodependence of MuSVts110 RNA splicing do not involve any particular 3' splice site or branch point sequence, but rather lie near the 5' end of the intron.


Author(s):  
Alyssa R Martin ◽  
Alexandra M Bender ◽  
Jada Hackman ◽  
Kyungyoon J Kwon ◽  
Briana A Lynch ◽  
...  

Abstract Background The HIV-1 latent reservoir (LR) in resting CD4 + T cells is a barrier to cure. LR measurements are commonly performed on blood samples and therefore may miss latently infected cells residing in tissues, including lymph nodes. Methods We determined the frequency of intact HIV-1 proviruses and proviral inducibility in matched peripheral blood (PB) and lymph node (LN) samples from ten HIV-1-infected patients on ART using the intact proviral DNA assay and a novel quantitative viral induction assay. Prominent viral sequences from induced viral RNA were characterized using a next-generation sequencing assay. Results The frequencies of CD4 + T cells with intact proviruses were not significantly different in PB vs LN (61vs104/10 6CD4 + cells), and were substantially lower than frequencies of CD4 + T cells with defective proviruses. The frequencies of CD4 + T cells induced to produce high levels of viral RNA were not significantly different in PB vs LN (4.3/10 6 vs 7.9/10 6), but were 14-fold lower than the frequencies of cells with intact proviruses. Sequencing of HIV-1 RNA from induced proviruses revealed comparable sequences in paired PB and LN samples. Conclusions These results further support the use of PB as an appropriate proxy for the HIV-1 LR in secondary lymphoid organs


Sign in / Sign up

Export Citation Format

Share Document