Bovine submaxillary mucin (BSM) adsorption at solid/ liquid interfaces and surface forces

1984 ◽  
Vol 10 ◽  
pp. 43-52 ◽  
Author(s):  
Jacques Emile Proust ◽  
Adam Baszkin ◽  
Eric Perez ◽  
Marie Martine Boissonnade
2019 ◽  
Vol 91 (4) ◽  
pp. 707-716 ◽  
Author(s):  
Kazue Kurihara

Abstract This article reviews the surface forces measurement as a novel tool for materials science. The history of the measurement is briefly described in the Introduction. The general overview covers specific features of the surface forces measurement as a tool for studying the solid-liquid interface, confined liquids and soft matter. This measurement is a powerful way for understanding interaction forces, and for characterizing (sometime unknown) phenomena at solid-liquid interfaces and soft complex matters. The surface force apparatus (SFA) we developed for opaque samples can study not only opaque samples in various media, but also electrochemical processes under various electrochemical conditions. Electrochemical SFA enables us to determine the distribution of counterions between strongly bound ones in the Stern layer and those diffused in the Gouy-Chapman layer. The shear measurement is another active area of the SFA research. We introduced a resonance method, i.e. the resonance shear measurement (RSM), that is used to study the effective viscosity and lubricity of confined liquids in their thickness from μm to contact. Advantages of these measurements are discussed by describing examples of each measurement. These studies demonstrate how the forces measurement is used for characterizing solid-liquid interfaces, confined liquids and reveal unknown phenomena. The readers will be introduced to the broad applications of the forces measurement in the materials science field.


Surfactants ◽  
2019 ◽  
pp. 269-313
Author(s):  
Bob Aveyard

The landmark DLVO theory of colloid stability sought to explain the stability of lyophobic colloids in terms of the interplay between attractive dispersion forces, and repulsive electrical (Coulombic) forces between particle surfaces. The net interaction energy between two particles (resulting from these so-called surface forces) as a function of surface separation can exhibit a maximum, a deep (primary) minimum and/or a shallow (secondary) minimum, giving stable, unstable or weakly flocculated dispersions. Other surface forces include steric forces arising from grafted or adsorbed polymer chains on the surfaces. Unadsorbed polymer can result in attractive depletion forces between particles, and polymer molecules that bridge particles can cause flocculation. Other forces mentioned are oscillatory structural forces, attractive hydrophobic forces and repulsive hydration forces between surfaces in water. Direct measurement of surface forces between both solid/liquid interfaces and between liquid/liquid interfaces is discussed at the end of the chapter.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1502
Author(s):  
Johannes M. Parikka ◽  
Karolina Sokołowska ◽  
Nemanja Markešević ◽  
J. Jussi Toppari

The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.


Sign in / Sign up

Export Citation Format

Share Document