Use of a DNA probe to analyse the dynamics of infection with rodent malaria parasites confirms that parasite clearance during crisis is predominantly strain- and species-specific

1989 ◽  
Vol 37 (1) ◽  
pp. 37-46 ◽  
Author(s):  
G SNOUNOU ◽  
W JARRA ◽  
S VIRIYAKOSOL ◽  
J WOOD ◽  
K BROWN
BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jane M. Carlton

AbstractThe study of human malaria caused by species of Plasmodium has undoubtedly been enriched by the use of model systems, such as the rodent malaria parasites originally isolated from African thicket rats. A significant gap in the arsenal of resources of the species that make up the rodent malaria parasites has been the lack of any such tools for the fourth of the species, Plasmodium vinckei. This has recently been rectified by Abhinay Ramaprasad and colleagues, whose pivotal paper published in BMC Biology describes a cornucopia of new P. vinckei ‘omics datasets, mosquito transmission experiments, transfection protocols, and virulence phenotypes, to propel this species firmly into the twenty-first century.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cui Zhang ◽  
Cihan Oguz ◽  
Sue Huse ◽  
Lu Xia ◽  
Jian Wu ◽  
...  

Abstract Background Rodent malaria parasites are important models for studying host-malaria parasite interactions such as host immune response, mechanisms of parasite evasion of host killing, and vaccine development. One of the rodent malaria parasites is Plasmodium yoelii, and multiple P. yoelii strains or subspecies that cause different disease phenotypes have been widely employed in various studies. The genomes and transcriptomes of several P. yoelii strains have been analyzed and annotated, including the lethal strains of P. y. yoelii YM (or 17XL) and non-lethal strains of P. y. yoelii 17XNL/17X. Genomic DNA sequences and cDNA reads from another subspecies P. y. nigeriensis N67 have been reported for studies of genetic polymorphisms and parasite response to drugs, but its genome has not been assembled and annotated. Results We performed genome sequencing of the N67 parasite using the PacBio long-read sequencing technology, de novo assembled its genome and transcriptome, and predicted 5383 genes with high overall annotation quality. Comparison of the annotated genome of the N67 parasite with those of YM and 17X parasites revealed a set of genes with N67-specific orthology, expansion of gene families, particularly the homologs of the Plasmodium chabaudi erythrocyte membrane antigen, large numbers of SNPs and indels, and proteins predicted to interact with host immune responses based on their functional domains. Conclusions The genomes of N67 and 17X parasites are highly diverse, having approximately one polymorphic site per 50 base pairs of DNA. The annotated N67 genome and transcriptome provide searchable databases for fast retrieval of genes and proteins, which will greatly facilitate our efforts in studying the parasite biology and gene function and in developing effective control measures against malaria.


DNA Research ◽  
2014 ◽  
Vol 21 (4) ◽  
pp. 439-446 ◽  
Author(s):  
Hajime Honma ◽  
Makoto Hirai ◽  
Shota Nakamura ◽  
Hassan Hakimi ◽  
Shin-ichiro Kawazu ◽  
...  

2016 ◽  
Vol 60 (11) ◽  
pp. 6859-6866 ◽  
Author(s):  
Zi Wei Chang ◽  
Benoit Malleret ◽  
Bruce Russell ◽  
Laurent Rénia ◽  
Carla Claser

ABSTRACTEx vivoassay systems provide a powerful approach to studying human malaria parasite biology and to testing antimalarials. For rodent malaria parasites, short-termin vitroculture andex vivoantimalarial susceptibility assays are relatively cumbersome, relying onin vivopassage for synchronization, since ring-stage parasites are an essential starting material. Here, we describe a new approach based on the enrichment of ring-stagePlasmodium berghei,P. yoelii, andP. vinckei vinckeiusing a single-step Percoll gradient. Importantly, we demonstrate that the enriched ring-stage parasites develop synchronously regardless of the parasite strain or species used. Using a flow cytometry assay with Hoechst and ethidium or MitoTracker dye, we show that parasite development is easily and rapidly monitored. Finally, we demonstrate that this approach can be used to screen antimalarial drugs.


Parasite ◽  
1994 ◽  
Vol 1 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Said Ahamada ◽  
M. Wery ◽  
R. Hamers

1998 ◽  
Vol 66 (9) ◽  
pp. 4080-4086 ◽  
Author(s):  
Maria M. Mota ◽  
K. Neil Brown ◽  
Anthony A. Holder ◽  
William Jarra

ABSTRACT CBA/Ca mice infected with 5 × 104 Plasmodium chabaudi chabaudi AS-parasitized erythrocytes experience acute but self-limiting infections of relatively short duration. Parasitemia peaks (∼40% infected erythrocytes) on day 10 or 11 and is then partially resolved over the ensuing 5 to 6 days, a period referred to as crisis. How humoral and cellular immune mechanisms contribute to parasite killing and/or clearance during crisis is controversial. Humoral immunity might be parasite variant, line, or species specific, while cellular immune responses would be relatively less specific. For P. c. chabaudi AS, parasite clearance is largely species and line specific during this time, which suggests a primary role for antibody activity. Accordingly, acute-phase plasma (APP; taken fromP. c. chabaudi AS-infected mice at day 11 or 12 postinfection) was examined for the presence of parasite-specific antibody activity by enzyme-linked immunosorbent assay. Antibody binding to the surface of intact, live parasitized erythrocytes, particularly those containing mature (trophozoite and schizont) parasites, was demonstrated by immunofluorescence in APP and the immunoglobulin G (IgG)-containing fraction thereof. Unfractionated APP (from P. c. chabaudi AS-infected mice), as well as its IgG fraction, specifically mediated the opsonization and internalization of P. c. chabaudi AS-parasitized erythrocytes by macrophages in vitro. APP from another parasite line (P. c. chabaudi CB) did not mediate the same effect against P. c. chabaudi AS-parasitized erythrocytes. These results, which may represent one mechanism of parasite removal during crisis, are discussed in relation to the parasite variant, line, and species specificity of parasite clearance during this time.


2006 ◽  
Vol 1 (1) ◽  
pp. 476-485 ◽  
Author(s):  
Blandine Franke-Fayard ◽  
Andrew P Waters ◽  
Chris J Janse

Author(s):  
Nisha Philip ◽  
Rachael Orr ◽  
Andrew P. Waters

2006 ◽  
Vol 50 (2) ◽  
pp. 480-489 ◽  
Author(s):  
A. Afonso ◽  
P. Hunt ◽  
S. Cheesman ◽  
A. C. Alves ◽  
C. V. Cunha ◽  
...  

ABSTRACT Resistance of Plasmodium falciparum to drugs such as chloroquine and sulfadoxine-pyrimethamine is a major problem in malaria control. Artemisinin (ART) derivatives, particularly in combination with other drugs, are thus increasingly used to treat malaria, reducing the probability that parasites resistant to the components will emerge. Although stable resistance to artemisinin has yet to be reported from laboratory or field studies, its emergence would be disastrous because of the lack of alternative treatments. Here, we report for the first time, to our knowledge, genetically stable and transmissible ART and artesunate (ATN)-resistant malaria parasites. Each of two lines of the rodent malaria parasite Plosmodium chabaudi chabaudi, grown in the presence of increasing concentrations of ART or ATN, showed 15-fold and 6-fold increased resistance to ART and ATN, respectively. Resistance remained stable after cloning, freeze-thawing, after passage in the absence of drug, and transmission through mosquitoes. The nucleotide sequences of the possible genetic modulators of ART resistance (mdr1, cg10, tctp, and atp6) of sensitive and resistant parasites were compared. No mutations in these genes were identified. In addition we investigated whether changes in the copy number of these genes could account for resistance but found that resistant parasites retained the same number of copies as their sensitive progenitors. We believe that this is the first report of a malaria parasite with genetically stable and transmissible resistance to artemisinin or its derivatives.


Sign in / Sign up

Export Citation Format

Share Document