Solubilization of thiazide diuretic receptors from rat kidney membranes

1990 ◽  
Vol 1052 (1) ◽  
pp. 119-122 ◽  
Author(s):  
Hong Luo ◽  
Kevin Beaumont ◽  
Duke A. Vaughn ◽  
Darrell D. Fanestil
Keyword(s):  
1988 ◽  
Vol 85 (7) ◽  
pp. 2311-2314 ◽  
Author(s):  
K. Beaumont ◽  
D. A. Vaughn ◽  
D. D. Fanestil

Author(s):  
Aline Byrnes ◽  
Elsa E. Ramos ◽  
Minoru Suzuki ◽  
E.D. Mayfield

Renal hypertrophy was induced in 100 g male rats by the injection of 250 mg folic acid (FA) dissolved in 0.3 M NaHCO3/kg body weight (i.v.). Preliminary studies of the biochemical alterations in ribonucleic acid (RNA) metabolism of the renal tissue have been reported recently (1). They are: RNA content and concentration, orotic acid-c14 incorporation into RNA and acid soluble nucleotide pool, intracellular localization of the newly synthesized RNA, and the specific activity of enzymes of the de novo pyrimidine biosynthesis pathway. The present report describes the light and electron microscopic observations in these animals. For light microscopy, kidney slices were fixed in formalin, embedded, sectioned, and stained with H & E and PAS.


Author(s):  
D.C. Hixson ◽  
J.C. Chan ◽  
J.M. Bowen ◽  
E.F. Walborg

Several years ago Karasaki (1) reported the production of type C virus particles by Novikoff ascites hepatocarcinoma cells. More recently, Weinstein (2) has reported the presence of type C virus particles in cell cultures derived from transplantable and primary hepatocellular carcinomas. To date, the biological function of these virus and their significance in chemically induced hepatocarcinogenesis are unknown. The present studies were initiated to determine a possible role for type C virus particles in chemically induced hepatocarcinogenesis. This communication describes results of studies on the biological and surface properties of type C virus associated with Novikoff hepatocarcinoma cells.Ecotropic and xenotropic murine leukemia virus (MuLV) activity in ascitic fluid of Novikoff tumor-bearing rats was assayed in murine sarcoma virus transformed S+L- mouse cells and S+L- mink cells, respectively. The presence of sarcoma virus activity was assayed in non-virus-producing normal rat kidney (NRK) cells. Ferritin conjugates of concanavalin A (Fer-Con wheat germ agglutinin (Fer-WGA), and Ricinus communis agglutinins I and II (Fer-RCAI and Fer-RCAII) were used to probe the structure and topography of saccharide determinants present on the viral envelope.


Author(s):  
J. M. Barrett ◽  
P. M. Heidger

Microbodies have received extensive morphological and cytochemical investigation since they were first described by Rhodin in 1954. To our knowledge, however, all investigations of microbodies and cytoplasmic bodies of rat renal proximal tubule cells have employed immersion fixation. Tisher, et al. have shown convincing evidence of fine structural alteration of microbodies in rhesus monkey kidney following immersion fixation; these alterations were not encountered when in vivo intravascular perfusion was employed. In view of these studies, and the fact that techniques for perfusion fixation have been established specifically for the rat kidney by Maunsbach, it seemed desirable to employ perfusion fixation to study the fine structure and distribution of microbodies and cytoplasmic bodies within the rat renal proximal tubule.


Author(s):  
S.K. Aggarwal

The proposed primary mechanism of action of the anticancer drug cisplatin (Cis-DDP) is through its interaction with DNA, mostly through DNA intrastrand cross-links or DNA interstrand cross-links. DNA repair mechanisms can circumvent this arrest thus permitting replication and transcription to proceed. Various membrane transport enzymes have also been demonstrated to be effected by cisplatin. Glycoprotein alkaline phosphatase was looked at in the proximal tubule cells before and after cisplatin both in vivo and in vitro for its inactivation or its removal from the membrane using light and electron microscopy.Outbred male Swiss Webster (Crl: (WI) BR) rats weighing 150-250g were given ip injections of cisplatin (7mg/kg). Animals were killed on day 3 and day 5. Thick slices (20-50.um) of kidney tissue from treated and untreated animals were fixed in 1% buffered glutaraldehyde and 1% formaldehyde (0.05 M cacodylate buffer, pH 7.3) for 30 min at 4°C. Alkaline phosphatase activity and carbohydrates were demonstrated according to methods described earlier.


2003 ◽  
Vol 31 (4) ◽  
pp. 462-464 ◽  
Author(s):  
Eveline P. C. T. de Rijk ◽  
Wilma T. M. Ravesloot ◽  
Yvonne Wijnands ◽  
Eric van Esch

1980 ◽  
Vol 93 (3) ◽  
pp. 339-345 ◽  
Author(s):  
Naokazu Nagata ◽  
Yuriko Ono ◽  
Narimichi Kimura

Abstract. The interaction between parathyroid hormone (PTH) and prostaglandin E1 (PGE1) in influencing cyclic AMP metabolism in rat renal cortical tissue was examined. PTH and PGE1 stimulated additively the adenylate cyclase activity in the homogenate of the tissue. Both PTH and PGE1 enhanced the level of cyclic AMP in the incubated renal cortical tissue, but the effect of their simultaneous addition did not exceed the effect induced by PTH alone. Cyclic AMP accumulated in the incubation medium by stimulation by PTH was decreased by the simultaneous addition of PGE1. When the tissue was pre-incubated for 30 min with 2 to 10 μg/ml of PGE1, the magnitude of the increase of cyclic AMP caused by PTH subsequently added was lessened. However, the response to PTH of adenylate cyclase preparation obtained from the homogenate of PGE1-pre-treated tissue was not decreased. When first PTH was added to the incubating renal cortical tissue, the subsequent addition of PGE1 accelerated the decrease of cyclic AMP content in the tissue and decreased the amount of cyclic AMP released from the tissue. The interaction of PTH and PGE1 on cyclic AMP metabolism in the renal cortical tissue was in contrast to that seen in newborn rat calvaria where PGE1 and PTH acted additively in enhancing the level of cyclic AMP.


1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S1
Author(s):  
H.-G. SCHNEIDER ◽  
F. RAUE ◽  
J. SCHROTH ◽  
H. SCHERÜBL ◽  
R. ZIEGLER

Diabetes ◽  
1976 ◽  
Vol 25 (11) ◽  
pp. 1066-1070 ◽  
Author(s):  
J. Risteli ◽  
V. A. Koivisto ◽  
H. K. Akerblom ◽  
K. I. Kivirikko

Diabetes ◽  
1993 ◽  
Vol 42 (6) ◽  
pp. 891-900 ◽  
Author(s):  
P. Holck ◽  
R. Rasch
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document