collagen biosynthesis
Recently Published Documents


TOTAL DOCUMENTS

370
(FIVE YEARS 25)

H-INDEX

44
(FIVE YEARS 1)

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1314
Author(s):  
Sylwia Lewoniewska ◽  
Ilona Oscilowska ◽  
Antonella Forlino ◽  
Jerzy Palka

It has been suggested that activation of estrogen receptor α (ER α) stimulates cell proliferation. In contrast, estrogen receptor β (ER β) has anti-proliferative and pro-apoptotic activity. Although the role of estrogens in estrogen receptor-positive breast cancer progression has been well established, the mechanism of their effect on apoptosis is not fully understood. It has been considered that ER status of breast cancer cells and estrogen availability might determine proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis. PRODH/POX is a mitochondrial enzyme that converts proline into pyrroline-5-carboxylate (P5C). During this process, ATP (adenosine triphosphate) or ROS (reactive oxygen species) are produced, facilitating cell survival or death, respectively. However, the critical factor in driving PRODH/POX-dependent functions is proline availability. The amount of this amino acid is regulated at the level of prolidase (proline releasing enzyme), collagen biosynthesis (proline utilizing process), and glutamine, glutamate, α-ketoglutarate, and ornithine metabolism. Estrogens were found to upregulate prolidase activity and collagen biosynthesis. It seems that in estrogen receptor-positive breast cancer cells, prolidase supports proline for collagen biosynthesis, limiting its availability for PRODH/POX-dependent apoptosis. Moreover, lack of free proline (known to upregulate the transcriptional activity of hypoxia-inducible factor 1, HIF-1) contributes to downregulation of HIF-1-dependent pro-survival activity. The complex regulatory mechanism also involves PRODH/POX expression and activity. It is induced transcriptionally by p53 and post-transcriptionally by AMPK (AMP-activated protein kinase), which is regulated by ERs. The review also discusses the role of interconversion of proline/glutamate/ornithine in supporting proline to PRODH/POX-dependent functions. The data suggest that PRODH/POX-induced apoptosis is dependent on ER status in breast cancer cells.


2021 ◽  
Vol 33 (12) ◽  
pp. 321-328
Author(s):  
Khaled Omarizadeh ◽  
Mohammad Reza Farahpour ◽  
Mahshid Alipour

Introduction. Satureja sahendica has antibacterial and anti-inflammatory properties that can have beneficial effects for decreasing inflammation in infected wounds. Objective. This study was conducted to evaluate the effects of an ointment prepared from S sahendica essential oil (SSO) on an infected wound model in BALB/c mice. Materials and Methods. One full-thickness excisional skin wound was surgically created per animal and inoculated with 5 × 107 colony-forming units of Pseudomonas aeruginosa and Staphylococcus aureus. Following induction of the wound, the mice (N = 90) were treated with soft yellow paraffin (negative control, n = 18), mupirocin (positive control, n = 18) and 1%, 2%, and 4% SSO (n = 18 in each of the 3 groups). To determine the effect of the treatments on healing of an infected wound, the following factors were assessed: rate of the wound area, tissue bacterial count, histopathology, collagen biosynthesis, immunohistochemistry, and the expressions of insulin-like growth factor (IGF)-1, fibroblast growth factor (FGF)-2, vascular endothelial growth factor (VEGF), interleukin (IL)-1ß, IL-4, transforming growth factor beta (TGF-ß), and chemokine (CXC motif) ligand 1 (CXCL-1) on days 3, 7, and 14 after induction of the wound. Results. Topical administration of SSO shortened the inflammatory phase, accelerated cellular proliferation, and increased fibroblast distribution per 1 mm2, collagen deposition, and rapid reepithelialization in comparison with control animals (P <.05). The messenger RNA levels of IGF-1, IL-10, FGF-2, VEGF, TGF-ß1, and CXCL-1 were remarkably increased, and IL-1ß level decreased (P <.05) in the treated animals compared with the control group (P <.05). The immunohistochemical analyses showed topical administration of SSO increased collagen biosynthesis in the treated group (P <.05). Conclusions. Topical administration of SSO shows evidence of accelerating wound healing by upregulating the expression of IGF-1, IL-10, FGF-2, VEGF, TGF-ß, and CXCL-1; shortening the inflammatory stage; and promoting the proliferative phase.


2021 ◽  
Vol 22 (23) ◽  
pp. 12959
Author(s):  
Kyohei Koseki ◽  
Aoi Yamamoto ◽  
Keisuke Tanimoto ◽  
Naho Okamoto ◽  
Fei Teng ◽  
...  

(1) Background: Vitamin B12 deficiency in Caenorhabditis elegans results in severe oxidative stress and induces morphological abnormality in mutants due to disordered cuticle collagen biosynthesis. We clarified the underlying mechanism leading to such mutant worms due to vitamin B12 deficiency. (2) Results: The deficient worms exhibited decreased collagen levels of up to approximately 59% compared with the control. Although vitamin B12 deficiency did not affect the mRNA expression of prolyl 4-hydroxylase, which catalyzes the formation of 4-hydroxyproline involved in intercellular collagen biosynthesis, the level of ascorbic acid, a prolyl 4-hydroxylase coenzyme, was markedly decreased. Dityrosine crosslinking is involved in the extracellular maturation of worm collagen. The dityrosine level of collagen significantly increased in the deficient worms compared with the control. However, vitamin B12 deficiency hardly affected the mRNA expression levels of bli-3 and mlt-7, which are encoding crosslinking-related enzymes, suggesting that deficiency-induced oxidative stress leads to dityrosine crosslinking. Moreover, using GMC101 mutant worms that express the full-length human amyloid β, we found that vitamin B12 deficiency did not affect the gene and protein expressions of amyloid β but increased the formation of dityrosine crosslinking in the amyloid β protein. (3) Conclusions: Vitamin B12-deficient wild-type worms showed motility dysfunction due to decreased collagen levels and the formation of highly tyrosine-crosslinked collagen, potentially reducing their flexibility. In GMC101 mutant worms, vitamin B12 deficiency-induced oxidative stress triggers dityrosine-crosslinked amyloid β formation, which might promote its stabilization and toxic oligomerization.


2021 ◽  
Author(s):  
Jeremy A. Herrera ◽  
Lewis Dingle ◽  
M. Angeles Montero ◽  
Rajesh Shah ◽  
Rajamiyer V. Venkateswaran ◽  
...  

Background: The Fibroblastic Focus (FF) is the signature lesion of Idiopathic Pulmonary Fibrosis (IPF) where myofibroblasts accumulate and extracellular matrix (ECM) is produced. However, the molecular composition and function of the FF and surrounding tissue remain undefined. Methods: Utilizing laser capture microdissection coupled mass spectrometry (LCM-MS), we interrogated the FF, adjacent mature scar, and adjacent alveoli in 6 IPF specimens plus 6 non-fibrotic alveolar specimens as controls. The data were subject to qualitative and quantitative analysis, and validation by immunohistochemistry. Results: We found that the protein signature of IPF alveoli is defined by immune deregulation as the strongest category. The IPF mature scar was classified as end-stage fibrosis whereas the FF contained an overabundance of a distinctive ECM compared to non-fibrotic control. Conclusion: Spatial proteomics demonstrated distinct protein compositions in the histologically defined regions of IPF tissue. These data revealed that the FF is the main site of collagen biosynthesis and that the alveoli adjacent to the FF are abnormal. This new and essential information will inform future mechanistic studies on mechanisms of IPF progression.


2021 ◽  
Vol 10 (20) ◽  
pp. 4641
Author(s):  
Sylwia Lewoniewska ◽  
Ilona Oscilowska ◽  
Thi Yen Ly Huynh ◽  
Izabela Prokop ◽  
Weronika Baszanowska ◽  
...  

The impact of estradiol on troglitazone (TGZ)-induced proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied in wild-type and PRODH/POX-silenced estrogen receptor (ER) dependent MCF-7 cells and ER-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, prolidase activity evaluated by colorimetric method, ROS production was measured by fluorescence assay. Protein expression was determined by Western blot and proline concentration by LC/MS analysis. PRODH/POX degrades proline yielding reactive oxygen species (ROS). Estrogens stimulate collagen biosynthesis utilizing free proline and limiting its availability for PRODH/POX-dependent apoptosis. TGZ cytotoxicity was highly pronounced in wild-type MDA-MB-231 cells cultured in medium without estradiol or in the cells cultured in medium with estradiol but deprived of ERβ (by ICI-dependent degradation), while in PRODH/POX-silenced cells the process was not affected. The TGZ cytotoxicity was accompanied by increase in PRODH/POX expression, ROS production, expression of cleaved caspase-3, caspase-9 and PARP, inhibition of collagen biosynthesis, prolidase activity and decrease in intracellular proline concentration. The phenomena were not observed in PRODH/POX-silenced cells. The data suggest that TGZ-induced apoptosis in MDA-MB-231 cells cultured in medium without estradiol or deprived of ERβ is mediated by PRODH/POX and the process is facilitated by proline availability for PRODH/POX by TGZ-dependent inhibition of collagen biosynthesis. It suggests that combined TGZ and antiestrogen treatment could be considered in experimental therapy of estrogen receptor negative breast cancers.


2021 ◽  
Vol 14 (3) ◽  
pp. 113-119
Author(s):  
L. L. Arutyunyan ◽  
E. N. Iomdina ◽  
Yu. S. Morozova ◽  
S. I. Anisimov ◽  
S. Yu. Anisimova

The results of comparative studies of the structural and biomechanical features of the corneoscleral eye shell in various clinical forms of glaucoma are presented. The article discusses how the systemic and local imbalance of trace elements that regulate collagen biosynthesis, the formation of cross-links in the connective tissue structures of the sclera, and the hydrodynamics of the intraocular fluid, affect the intraocular pressure level, and thereby the character of the development of glaucomatous lesions in normal tension glaucoma. Modern literature is shown to indicate the prospects for further research in this direction.


2021 ◽  
Vol 14 (9) ◽  
pp. 874
Author(s):  
Magdalena Misiura ◽  
Ilona Ościłowska ◽  
Katarzyna Bielawska ◽  
Jerzy Pałka ◽  
Wojciech Miltyk

Celecoxib (Cx), an inhibitor of cyclooxygenase 2, induces apoptosis of cancer cells. However, the mechanism of the chemopreventive effect remains not fully understood. We aimed to investigate the role of PRODH/POX that is involved in the regulation of apoptosis induced by celecoxib. MCF-7 breast cancer cell line and the corresponding MCF-7 cell line with silenced PRODH/POX (MCF-7shPRODH/POX) were used. The effects of Cx on cell viability, proliferation, and cell cycle were evaluated. The expressions of protein markers for apoptosis (Bax, caspase 9, and PARP) and autophagy (Atg5, Beclin 1, and LC3A/B) were investigated by Western immunoblotting. To analyze the proline metabolism, collagen biosynthesis, prolidase activity, proline concentration, and the expression of proline-related proteins were evaluated. The generation of ATP, ROS, and the ratio of NAD+/NADH and NADP+/NADPH were determined to test the effect of Cx on energetic metabolism in breast cancer cells. It has been found that Cx attenuated MCF-7 cell proliferation via arresting the cell cycle. Cx induced apoptosis in MCF-7 breast cancer cells, while in MCF-7shPRODH/POX, autophagy occurred more predominantly. In MCF-7 breast cancer cells, Cx affected proline metabolism through upregulation of proline biosynthesis, PRODH/POX and PYCRs expressions, PEPD activity, and downregulation of collagen biosynthesis. In MCF-7shPRODH/POX clones, these processes, as well as energetic metabolism, were remarkably suppressed. The data for the first time suggest that celecoxib induces apoptosis through upregulation of PRODH/POX in MCF-7 breast cancer cells.


2021 ◽  
pp. 249-261
Author(s):  
Eugene A. Bauer ◽  
Daniel J. Santa Cruz ◽  
Jouni Uitto ◽  
Arthur Z. Eisen

2021 ◽  
Author(s):  
Shengkai Zuo ◽  
Bei Wang ◽  
Jiao Liu ◽  
Deping Kong ◽  
Hui Cui ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ceylan Onursal ◽  
Elisabeth Dick ◽  
Ilias Angelidis ◽  
Herbert B. Schiller ◽  
Claudia A. Staab-Weijnitz

In addition to providing a macromolecular scaffold, the extracellular matrix (ECM) is a critical regulator of cell function by virtue of specific physical, biochemical, and mechanical properties. Collagen is the main ECM component and hence plays an essential role in the pathogenesis and progression of chronic lung disease. It is well-established that many chronic lung diseases, e.g., chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) primarily manifest in the elderly, suggesting increased susceptibility of the aged lung or accumulated alterations in lung structure over time that favour disease. Here, we review the main steps of collagen biosynthesis, processing, and turnover and summarise what is currently known about alterations upon lung ageing, including changes in collagen composition, modification, and crosslinking. Recent proteomic data on mouse lung ageing indicates that, while the ER-resident machinery of collagen biosynthesis, modification and triple helix formation appears largely unchanged, there are specific changes in levels of type IV and type VI as well as the two fibril-associated collagens with interrupted triple helices (FACIT), namely type XIV and type XVI collagens. In addition, levels of the extracellular collagen crosslinking enzyme lysyl oxidase are decreased, indicating less enzymatically mediated collagen crosslinking upon ageing. The latter contrasts with the ageing-associated increase in collagen crosslinking by advanced glycation endproducts (AGEs), a result of spontaneous reactions of protein amino groups with reactive carbonyls, e.g., from monosaccharides or reactive dicarbonyls like methylglyoxal. Given the slow turnover of extracellular collagen such modifications accumulate even more in ageing tissues. In summary, the collective evidence points mainly toward age-induced alterations in collagen composition and drastic changes in the molecular nature of collagen crosslinks. Future work addressing the consequences of these changes may provide important clues for prevention of lung disease and for lung bioengineering and ultimately pave the way to novel targeted approaches in lung regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document