Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions

1983 ◽  
Vol 12 (1) ◽  
pp. 49-73 ◽  
Author(s):  
B.J. Vickery ◽  
R.I. Basu
Author(s):  
А.В. ГУКАСЯН ◽  
В.С. КОСАЧЕВ ◽  
Е.П. КОШЕВОЙ

Получено аналитическое решение двумерного слоистого напорного течения в канале шнека, позволяющее моделировать расходно-напорные характеристики прямоугольных каналов шнековых прессов с учетом гидравлического сопротивления формующих устройств и рассчитывать расходно-напорные характеристики экструдеров в широком диапазоне геометрии витков как в поперечном сечении, так и по длине канала. Obtained the analytical solution of two-dimensional layered pressure flow in the screw channel, allow to simulate the flow-dynamic pressure characteristics of rectangular channels screw presses taking into account the hydraulic resistance of the forming device and calculate the mass flow-dynamic pressure characteristics of the extruders in a wide range of the geometry of the coils, as in its cross section and along the length of the channel.


2020 ◽  
Vol 307 ◽  
pp. 01047
Author(s):  
Gohar Shoukat ◽  
Farhan Ellahi ◽  
Muhammad Sajid ◽  
Emad Uddin

The large energy consumption of membrane desalination process has encouraged researchers to explore different spacer designs using Computational Fluid Dynamics (CFD) for maximizing permeate per unit of energy consumed. In previous studies of zigzag spacer designs, the filaments are modeled as circular cross sections in a two-dimensional geometry under the assumption that the flow is oriented normal to the filaments. In this work, we consider the 45° orientation of the flow towards the three-dimensional zigzag spacer unit, which projects the circular cross section of the filament as elliptical in a simplified two-dimensional domain. OpenFOAM was used to simulate the mass transfer enhancement in a reverse-osmosis desalination unit employing spiral wound membranes lined with zigzag spacer filaments. Properties that impact the concentration polarization and hence permeate flux were analyzed in the domain with elliptical filaments as well as a domain with circular filaments to draw suitable comparisons. The range of variation in characteristic parameters across the domain between the two different configurations is determined. It was concluded that ignoring the elliptical projection of circular filaments to the flow direction, can introduce significant margin of error in the estimation of mass transfer coefficient.


1999 ◽  
Vol 67 (2) ◽  
pp. 274-281 ◽  
Author(s):  
D. Das ◽  
J. H. Arakeri

In this paper we give a procedure to obtain analytical solutions for unsteady laminar flow in an infinitely long pipe with circular cross section, and in an infinitely long two-dimensional channel, created by an arbitrary but given volume flow rate with time. In the literature, solutions have been reported when the pressure gradient variation with time is prescribed but not when the volume flow rate variation is. We present some examples: (a) the flow rate has a trapezoidal variation with time, (b) impulsively started flow, (c) fully developed flow in a pipe is impulsively blocked, and (d) starting from rest the volume flow rate oscillates sinusoidally. [S0021-8936(00)01702-5]


Straight vortex filaments are considered with a circular cross section, with zero vorticity outside a given radius a , and with a power-law distribution of vorticity within the radius a such that the azimuthal velocity varies like r β as a function of the radius r . It is shown that the vortices are stable to a two-dimensional disturbance if –1 < β < 1 and unstable if β > 1. Numerical values are given for the eigenvalue and compared with results obtained from asymptotic analysis in some limiting cases. The behaviour near β = 1 is discussed in some detail. Results are found for different values of the mode number m , but for each m and β it was only possible to find a single root or pair of conjugate complex roots.


Sign in / Sign up

Export Citation Format

Share Document