Abundance patterns and foraging activity of ant communities in abandoned, organic and commercial apple orchards in Northern California

1984 ◽  
Vol 11 (4) ◽  
pp. 341-352 ◽  
Author(s):  
Miguel A. Altieri ◽  
Linda L. Schmidt
Author(s):  
Dylan J. MacArthur-Waltz ◽  
Rebecca A. Nelson ◽  
Gail Lee ◽  
Deborah M. Gordon

AbstractAnthropogenic disturbances, including land use change and exotic species, can alter the diversity and dynamics of ant communities. To examine foraging behavior in an urbanized habitat in northern California, we surveyed the presence of 9 ant species on 876 trees across 4 seasons during both day and night in a 9.5-hectare urbanized oak-exotic woodland. Ants were more likely to be observed on native, evergreen trees, suggesting that native evergreen species may help maintain ant diversity. Species showed clear patterns of temporal partitioning of foraging activity. Ant species varied in their use of native evergreen Quercus agrifolia trees across season and day/night axes. Of the 3 ant species most frequently observed, Camponotus semitestaceus was most active during spring and summer nights, Formica moki was most active during spring and summer days, and Prenolepis imparis was most active during both day and night during fall and winter. Liometopum occidentale was the second most active species during summer day and night, and winter day. Our findings demonstrate that an oak-exotic urban woodland in Northern California was able to maintain a native ant community, and strong temporal partitioning within that community.


2021 ◽  
Author(s):  
◽  
Rafael Forti Barbieri

<p>Several biotic and abiotic stressors can influence community assembly. The negative co-occurrence patterns observed within many communities, for example, may derive either from behavioural similarities (e.g. species displaying high aggression levels towards each other) or habitat preference. I evaluated the role of several stressors that may shape New Zealand’s ant communities. First, I investigated (in chapter 2) the co-occurrence patterns of two native ant communities located within transitional grassland-forest habitats. I also monitored the temperature variation in these habitats over a one-year period. I found that grasslands are exposed to higher temperature variation than forest habitats. I also found that some ants are mostly associated with forest habitats and others with grasslands. Using null models to examine these communities, I found evidence that two ant species (Monomorium antarcticum and Prolasius advenus) exhibit negative co-occurrence patterns. In the reminder of my thesis I developed a series of laboratory-based experiments to examine the processes that could explain the co-occurrence patterns that I observed in these ant communities.  In chapter 3, I subjected heterospecific groups of ants to interactions in controlled conditions. I asked if interspecific aggression predict the survival probability and co-occurrence patterns described in chapter 2. My results demonstrated that aggression predicted the survival probability of interacting ant species and their co-occurrence patterns. I argued that aggressive behaviour might reflect the risks imposed by competitors. Differences in aggression may thus be a key factor influencing sympatric and allopatric co-occurrence patterns of these ant communities.  In chapter 4, I tested the hypotheses that arrival sequence and diet influence the strength of interactions between colonies of two species that exhibited negative co-occurrence patterns (P. advenus and M. antarcticum). When arriving first, P. advenus displayed increased aggression and M. antarcticum a defensive reaction. The adoption of a defensive reaction by M. antarcticum increased their colony survival probability. Changes in carbohydrate and protein availability modulated colony activity rates of both species. These results indicate that arrival sequence can modulate the territorial behaviour displayed by interacting species in situations of conflict. Also, I showed that these ant species adjust their foraging activity rates in according to their diet, but different species do so differently.  In chapter 5, I expanded the scope of chapter 4 and asked if aggression and foraging behaviour of P. advenus and M. antarcticum change in different conditions of temperature, diet and group size. For both ant species, changes in temperature had stronger effects on small than large colonies. Small groups of M. antarcticum displayed higher foraging activity at lower temperatures. Conversely, small groups of P. advenus displayed higher foraging activity at high temperatures. Also, small M. antarcticum colonies displayed increased aggression and significantly reduced the size of large P. advenus colonies, regardless of temperature and diet. These results suggest that P. advenus and M. antarcticum perform differently at different temperatures. Furthermore, I demonstrated that the persistence of these small colonies might be related to their ability to modulate foraging activities and interspecific aggression according to the environment.  I also investigated (in chapter 6) the effects of a neurotoxic pesticide (neonicotinoid) on a native (M. antarcticum) and an invasive ant (Linepithema humile). I tested whether sublethal contamination with a neonicotinoid affects foraging, fitness and the outcome of interspecific interactions between these ants. Overall, pesticide exposure increased aggression of the invasive ant and reduced the aggression of the native species. Importantly, non-exposed individuals of the invasive species subjected to interactions against exposed natives were less aggressive, but more likely to survive. These results suggest that the modification of the physicochemical environment by pesticide contamination could change the dynamics of communities and influence invasion success.  Overall, this thesis highlights that synergistic effects between several biotic and abiotic factors influence community assembly. My results suggest that non-random allopatric patterns of niche occupancy observed in these ant communities are better explained by high levels of aggression displayed between pairs of species that seldom co-occur, though I was unable to falsify the hypothesis that habitat preference also plays a role in determining their distribution and co-occurrence patterns. The modification of behaviour by external factors – either natural (e.g. temperature) or human mediated (e.g. pesticide exposure) – likely has broad effects on population and community dynamics and on patterns of species co-existence.</p>


2021 ◽  
Author(s):  
◽  
Rafael Forti Barbieri

<p>Several biotic and abiotic stressors can influence community assembly. The negative co-occurrence patterns observed within many communities, for example, may derive either from behavioural similarities (e.g. species displaying high aggression levels towards each other) or habitat preference. I evaluated the role of several stressors that may shape New Zealand’s ant communities. First, I investigated (in chapter 2) the co-occurrence patterns of two native ant communities located within transitional grassland-forest habitats. I also monitored the temperature variation in these habitats over a one-year period. I found that grasslands are exposed to higher temperature variation than forest habitats. I also found that some ants are mostly associated with forest habitats and others with grasslands. Using null models to examine these communities, I found evidence that two ant species (Monomorium antarcticum and Prolasius advenus) exhibit negative co-occurrence patterns. In the reminder of my thesis I developed a series of laboratory-based experiments to examine the processes that could explain the co-occurrence patterns that I observed in these ant communities.  In chapter 3, I subjected heterospecific groups of ants to interactions in controlled conditions. I asked if interspecific aggression predict the survival probability and co-occurrence patterns described in chapter 2. My results demonstrated that aggression predicted the survival probability of interacting ant species and their co-occurrence patterns. I argued that aggressive behaviour might reflect the risks imposed by competitors. Differences in aggression may thus be a key factor influencing sympatric and allopatric co-occurrence patterns of these ant communities.  In chapter 4, I tested the hypotheses that arrival sequence and diet influence the strength of interactions between colonies of two species that exhibited negative co-occurrence patterns (P. advenus and M. antarcticum). When arriving first, P. advenus displayed increased aggression and M. antarcticum a defensive reaction. The adoption of a defensive reaction by M. antarcticum increased their colony survival probability. Changes in carbohydrate and protein availability modulated colony activity rates of both species. These results indicate that arrival sequence can modulate the territorial behaviour displayed by interacting species in situations of conflict. Also, I showed that these ant species adjust their foraging activity rates in according to their diet, but different species do so differently.  In chapter 5, I expanded the scope of chapter 4 and asked if aggression and foraging behaviour of P. advenus and M. antarcticum change in different conditions of temperature, diet and group size. For both ant species, changes in temperature had stronger effects on small than large colonies. Small groups of M. antarcticum displayed higher foraging activity at lower temperatures. Conversely, small groups of P. advenus displayed higher foraging activity at high temperatures. Also, small M. antarcticum colonies displayed increased aggression and significantly reduced the size of large P. advenus colonies, regardless of temperature and diet. These results suggest that P. advenus and M. antarcticum perform differently at different temperatures. Furthermore, I demonstrated that the persistence of these small colonies might be related to their ability to modulate foraging activities and interspecific aggression according to the environment.  I also investigated (in chapter 6) the effects of a neurotoxic pesticide (neonicotinoid) on a native (M. antarcticum) and an invasive ant (Linepithema humile). I tested whether sublethal contamination with a neonicotinoid affects foraging, fitness and the outcome of interspecific interactions between these ants. Overall, pesticide exposure increased aggression of the invasive ant and reduced the aggression of the native species. Importantly, non-exposed individuals of the invasive species subjected to interactions against exposed natives were less aggressive, but more likely to survive. These results suggest that the modification of the physicochemical environment by pesticide contamination could change the dynamics of communities and influence invasion success.  Overall, this thesis highlights that synergistic effects between several biotic and abiotic factors influence community assembly. My results suggest that non-random allopatric patterns of niche occupancy observed in these ant communities are better explained by high levels of aggression displayed between pairs of species that seldom co-occur, though I was unable to falsify the hypothesis that habitat preference also plays a role in determining their distribution and co-occurrence patterns. The modification of behaviour by external factors – either natural (e.g. temperature) or human mediated (e.g. pesticide exposure) – likely has broad effects on population and community dynamics and on patterns of species co-existence.</p>


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 625
Author(s):  
Vera Zina ◽  
Marc Ordeix ◽  
José Carlos Franco ◽  
Maria Teresa Ferreira ◽  
Maria Rosário Fernandes

In this study, we assess the potential of ants as bioindicators of riparian ecological health in two river types (upland and lowland type) located in the Catalonian region. We proposed to understand to what extent do metrics based on ant responses provide useful information that cannot be presented by traditional biophysical assessments while attempting an approach to creating an ant-based multimetric index (ant-based MMI) of the riparian ecological health. A total of 22 ant species were identified, and 42 metrics related to ant foraging activity, species richness, and functional traits were evaluated as potential core metrics of the index. Riparian features and proximal land use land cover (LULC) were used to distinguish disturbed from less disturbed sites. We found that ant communities strongly responded to human disturbance. When compared with an exclusively physical-based index for the assessment of the riparian health, the ant-based MMI was more sensitive to human disturbance, by also reacting to the effects of the surrounding LULC pressure. This study provides a preliminary approach for an ant-based assessment tool to evaluate the health of riparian corridors although additional research is required to include other river types and a wider stressor gradient before a wider application.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Hsun-Yi Hsieh ◽  
Ivette Perfecto

This paper provides a synthesis of the ecological impact of phorid fly parasitoids on ants. We find the most important impact of phorids on ants to be trait-mediated effects. Phorids diminish the foraging activity of ants, frequently reducing the number and average size of foragers and reducing the amount of food retrieved by a colony. However, ants' coping mechanisms include changing foraging site and time. Phorids can also affect competition, especially through changes in the ability of the host to win in exploitative competition. Factors such as microclimate, resource size, and habitat complexity interact with phorids to change their effect on competition. By being highly specific and attacking ants high in the competitive hierarchy, phorids can alter the linear nature of the competitive transitivity, and by reducing the number of foragers, they can change the discovery-dominance tradeoff that is observed in some ant communities. Trait-mediated effects of phorids also cascade to other trophic levels. As an example, we discuss the trait-mediated cascade of phorids on theAzteca instabilissystem in coffee. In this system, by reducing the foraging activity ofA. instabilis, phorids reduce the direct and indirect biological control impact of the ant in the coffee agroecosystem.


2008 ◽  
Vol 51 (6) ◽  
pp. 1199-1207 ◽  
Author(s):  
Denise Lange ◽  
Wedson Desidério Fernandes ◽  
Josué Raizer ◽  
Odival Faccenda

This study had the objective of assessing the differences in foraging activity of the predacious ants between two areas, one conventional and other with no-till agriculture systems. The research was conducted in two contiguous 1.5 ha plots in Dourados MS, Brazil, from February 2001 to December 2003. Each plot received 750 baits (Nasutitermes termites), 425 at daylight and 325 at night. The termites were placed on the filter paper, on the ground, and ant attack was monitored for 15 min, until removed. Sixteen ant species were found in the no-till system and nine in the conventional system. Baits removed from no-till were significantly higher than the conventional plots and were influenced by the sampling time, at day or night. The seasons of the year did not significantly explain the variations in the structure of the predacious ant communities in neither of the systems. The significant differences at foraging activity and ant richness between the areas indicated that the no-tillage system could improve environmental quality of the cropping and therefore, became an important tool for the integrated pest management programs.


1988 ◽  
Vol 132 ◽  
pp. 501-506
Author(s):  
C. Sneden ◽  
C. A. Pilachowski ◽  
K. K. Gilroy ◽  
J. J. Cowan

Current observational results for the abundances of the very heavy elements (Z&gt;30) in Population II halo stars are reviewed. New high resolution, low noise spectra of many of these extremely metal-poor stars reveal general consistency in their overall abundance patterns. Below Galactic metallicities of [Fe/H] Ã −2, all of the very heavy elements were manufactured almost exclusively in r-process synthesis events. However, there is considerable star-to-star scatter in the overall level of very heavy element abundances, indicating the influence of local supernovas on element production in the very early, unmixed Galactic halo. The s-process appears to contribute substantially to stellar abundances only in stars more metal-rich than [Fe/H] Ã −2.


2020 ◽  
Author(s):  
Alex Chow ◽  
Jackson Webster ◽  
Hunter Robinson ◽  
Robert rhew ◽  
Martin Tsz-Ki Tsui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document