scholarly journals Tree Preference and Temporal Activity Patterns for a Native Ant Community in an Urbanized California Woodland

Author(s):  
Dylan J. MacArthur-Waltz ◽  
Rebecca A. Nelson ◽  
Gail Lee ◽  
Deborah M. Gordon

AbstractAnthropogenic disturbances, including land use change and exotic species, can alter the diversity and dynamics of ant communities. To examine foraging behavior in an urbanized habitat in northern California, we surveyed the presence of 9 ant species on 876 trees across 4 seasons during both day and night in a 9.5-hectare urbanized oak-exotic woodland. Ants were more likely to be observed on native, evergreen trees, suggesting that native evergreen species may help maintain ant diversity. Species showed clear patterns of temporal partitioning of foraging activity. Ant species varied in their use of native evergreen Quercus agrifolia trees across season and day/night axes. Of the 3 ant species most frequently observed, Camponotus semitestaceus was most active during spring and summer nights, Formica moki was most active during spring and summer days, and Prenolepis imparis was most active during both day and night during fall and winter. Liometopum occidentale was the second most active species during summer day and night, and winter day. Our findings demonstrate that an oak-exotic urban woodland in Northern California was able to maintain a native ant community, and strong temporal partitioning within that community.

2019 ◽  
Author(s):  
Dylan MacArthur-Waltz ◽  
Rebecca Nelson ◽  
Gail Lee ◽  
Deborah M. Gordon

AbstractSpatial and temporal partitioning of habitat may facilitate diversity and have important impacts on ant communities. To investigate niche overlap in an ant community in a northern California oak woodland, we observed ant foraging on trees in 4 seasonal surveys, each lasting 2 weeks, in a 9.5-hectare plot over the course of a year. Foraging activity in all 5 observed ant species differed by season, time of day, and/or the genera of trees used. Of the 3 ant species most frequently observed, Camponotus semitestaceus was most active during spring and summer nights, Formica moki was most active during spring and summer days, and Prenolepis imparis was most active during both day and night of fall and winter. All ant species preferred native trees to exotic trees and preferred evergreen trees to deciduous trees. Our results suggest that native evergreen oaks such as Quercus agrifolia, currently threatened by sudden oak death (Phytophthora ramorum), may be important for supporting ant biodiversity.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 219
Author(s):  
Elia Guariento ◽  
Konrad Fiedler

Ants are crucial for the functioning of many terrestrial ecosystems, but detailed knowledge of their ecological role is often lacking. This is true for high mountains where a steep environmental gradient exists from mountainous forest, densely populated by ants, to grassland habitats above the tree line, harboring a sparse ant community. We assessed ant communities in and around the tree line ecotone on five slopes in the southern-central Alps, focusing on their species diversity, community composition, and functional dimensions. Species richness and functional diversity were highest directly at the ecotone. Ant community composition was shaped by elevation and shrub cover. Further, the abundance of the dominant mound-building red wood ants (Formica s. str.) influenced the community composition of the subordinate species. We conclude that over the tree line ecotone a shift in predominance from biotic limitations in the forest to abiotic filters in the alpine environment takes place.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12517
Author(s):  
Michele Mugnai ◽  
Clara Frasconi Wendt ◽  
Paride Balzani ◽  
Giulio Ferretti ◽  
Matteo Dal Cin ◽  
...  

Semi-natural grasslands are characterized by high biodiversity and require multifaceted approaches to monitor their biodiversity. Moreover, grasslands comprise a multitude of microhabitats, making the scale of investigation of fundamental importance. Despite their wide distribution, grasslands are highly threatened and are considered of high conservation priority by Directive no. 92/43/EEC. Here, we investigate the effects of small-scale ecological differences between two ecosites present within the EU habitat of Community Interest of semi-natural dry grasslands on calcareous substrates (6210 according to Dir. 92/43/EEC) occurring on a Mediterranean mountain. We measured taxonomic and functional diversity of plant and ant communities, evaluating the differences among the two ecosites, how these differences are influenced by the environment and whether vegetation affects composition of the ant community. Our results show that taxonomic and functional diversity of plant and ant communities are influenced by the environment. While vegetation has no effect on ant communities, we found plant and ant community composition differed across the two ecosites, filtering ant and plant species according to their functional traits, even at a small spatial scale. Our findings imply that small-scale monitoring is needed to effectively conserve priority habitats, especially for those that comprise multiple microhabitats.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
TADU ZEPHIRIN ◽  
EDOA STEPHANIE ◽  
MESSOP YOUBI EDITH-BLANDINE ◽  
GUIBAÏ JEAN-PIERRE ◽  
FOMEKONG-LONTCHI JUDICAËL ◽  
...  

Urban expansion in Cameroon and many other Congo basin countries, involves the destruction of natural habitat previously colonized by a rich and diversified invertebrate and vertebrate fauna. In order to understand the dynamic of transformation of natural landscape into urban area on ant communities, a study was conducted at Mfou, a suburban agglomeration of Yaoundé. We aimed to evaluate the variation in ant diversity and ant community structure in relation to the type of habitat. Ants were collected on the ground and trees in cocoa farms, secondary forests, and palm groves using visual catch, pitfall traps, quadrat, and baits. We recorded 144 species belonging to 39 genera and 6 subfamilies. Cocoa farms (S= 102; H’= 3.83; E=0.83) were richer and more diversified than secondary forests (S= 100; H’= 3.83; E=0.83) and palm groves (S= 70; H’= 3.61; E=0.85). Myrmicinae, Formicinae and Ponerinae were the richest subfamilies both at genus and species levels. Based on their frequency of occurrence, Myrmicaria opaciventris (18.6%), Crematogaster striatula (17.1%), Crematogaster gabonensis (14.9%) and Camponotus crawleyi Emery, 1920 (14.2%) species were numerically dominant. Strumigenys sp.1, Strumigenys sp.2, Strumigenys sp.3, and Strumigenys sp.4 species were found only in secondary forests, suggesting the relatively stability of this habitat despite anthropogenic disturbance. Camponotus brevicollis, Technomyrmex sp.2 and Tetramorium guineensis were the indicator species in cocoa farms. In the secondary forests, Camponotus wellmani, Hypoponera punctatissima and Pheidole pulchella were found as indicator species while in palm groves H. punctatissima was the only indicator species.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 358
Author(s):  
François Brassard ◽  
Chi-Man Leong ◽  
Hoi-Hou Chan ◽  
Benoit Guénard

The continuous increase in urbanization has been perceived as a major threat for biodiversity, particularly within tropical regions. Urban areas, however, may still provide opportunities for conservation. In this study focused on Macao (China), one of the most densely populated regions on Earth, we used a comprehensive approach, targeting all the vertical strata inhabited by ants, to document the diversity of both native and exotic species, and to produce an updated checklist. We then compared these results with 112 studies on urban ants to illustrate the dual roles of cities in sustaining ant diversity and supporting the spread of exotic species. Our study provides the first assessment on the vertical distribution of urban ant communities, allowing the detection of 55 new records in Macao, for a total of 155 ant species (11.5% being exotic); one of the highest species counts reported for a city globally. Overall, our results contrast with the dominant paradigm that urban landscapes have limited conservation value but supports the hypothesis that cities act as gateways for exotic species. Ultimately, we argue for a more comprehensive understanding of ants within cities around the world to understand native and exotic patterns of diversity.


2008 ◽  
Vol 24 (4) ◽  
pp. 445-455 ◽  
Author(s):  
Laura T. van Ingen ◽  
Ricardo I. Campos ◽  
Alan N. Andersen

AbstractIn mixed tropical landscapes, savanna and rain-forest vegetation often support contrasting biotas, and this is the case for ant communities in tropical Australia. Such a contrast is especially pronounced in monsoonal north-western Australia, where boundaries between rain forest and savanna are often extremely abrupt. However, in the humid tropics of north-eastern Queensland there is often an extended gradient between rain forest and savanna through eucalypt-dominated tall open forest. It is not known if ant community structure varies continuously along this gradient, or, if there is a major disjunction, where it occurs. We address this issue by sampling ants at ten sites distributed along a 6-km environmental gradient from rain forest to savanna, encompassing the crest and slopes of Mt. Lewis in North Queensland. Sampling was conducted using ground and baited arboreal pitfall traps, and yielded a total of 95 ant species. Mean trap species richness was identical in rain forest and rain-forest regrowth, somewhat higher in tall open forest, and twice as high again in savanna woodland. The great majority (78%) of the 58 species from savanna woodland were recorded only in this habitat type. MDS ordination of sites based on ant species composition showed a continuum from rain forest through rain-forest regrowth to tall open forest, and then a discontinuity between these habitat types and savanna woodland. These findings indicate that the contrast between rain forest and savanna ant communities in tropical Australia is an extreme manifestation of a broader forest-savanna disjunction.


2006 ◽  
Vol 41 (1) ◽  
pp. 75-83 ◽  
Author(s):  
Christopher J. Fettig ◽  
Christopher P. Dabney

Bark beetles (Coleoptera: Scolytidae) are commonly recognized as the most important mortality agent in western coniferous forests. In this study, we describe the abundance of bark beetle predators collected in multiple-funnel traps baited with exo-brevicomin, frontalin and myrcene in northern California during 2003 and 2004. A total of 32,903 Temnochila chlorodia (Mannerheim), 79 Enoclerus lecontei (Wolcott), and 12 E. sphegeus (F.) were collected. The seasonal abundance of E. lecontei and E. sphegeus was not analyzed because too few individuals were collected. In general, T. chlorodia was most abundant in late spring, but a second smaller peak in activity was observed in late summmer. Overall, the ratio of males to females was 0.82. A significant temporal effect was observed in regard to sex ratios with more males collected during later sample periods. Temnochila chlorodia flight activity patterns were similar between years, but activity was generally delayed several weeks in 2003.


2020 ◽  
Vol 22 ◽  
Author(s):  
Alexandra Nielsen ◽  
Rachel Atchison ◽  
Andrea Lucky

Invasive species are a serious threat to Florida’s native ecosystems and can have significant economic impacts. The invasive little fire ant (Wasmannia auropunctata) was first observed on the University of Florida’s campus in the Field and Fork Gardens in Summer 2018 and a targeted eradication of this population began in Fall 2018. This project aimed to compare ant community composition in invaded and uninvaded areas to better understand how ant invasions affect native ant communities. For comparison with Field and Fork Gardens invaded sites, four additional sites on UF’s campus were surveyed for ants through leaf litter sampling. Samples were sorted and all ants identified to the genus level; samples from invaded sites were identified to species. In samples from invaded sites, the community had lower species richness and a lower relative abundance of ant species compared to uninvaded communities. Determining how the invasion of the little fire ant affects ant communities is important as invasive ants do not fill the same ecosystem roles as native ants, such as seed dispersal and mutualist interactions. Data on community composition in uninvaded areas could be useful in efforts to restore a site after eradication has been achieved.


2021 ◽  
Vol 288 (1954) ◽  
pp. 20210816
Author(s):  
Karissa O. Lear ◽  
Nicholas M. Whitney ◽  
John J. Morris ◽  
Adrian C. Gleiss

Niche partitioning of time, space or resources is considered the key to allowing the coexistence of competitor species, and particularly guilds of predators. However, the extent to which these processes occur in marine systems is poorly understood due to the difficulty in studying fine-scale movements and activity patterns in mobile underwater species. Here, we used acceleration data-loggers to investigate temporal partitioning in a guild of marine predators. Six species of co-occurring large coastal sharks demonstrated distinct diel patterns of activity, providing evidence of strong temporal partitioning of foraging times. This is the first instance of diel temporal niche partitioning described in a marine predator guild, and is probably driven by a combination of physiological constraints in diel timing of activity (e.g. sensory adaptations) and interference competition (hierarchical predation within the guild), which may force less dominant predators to suboptimal foraging times to avoid agonistic interactions. Temporal partitioning is often thought to be rare compared to other partitioning mechanisms, but the occurrence of temporal partitioning here and similar characteristics in many other marine ecosystems (multiple predators simultaneously present in the same space with dietary overlap) introduces the question of whether this is a common mechanism of resource division in marine systems.


Author(s):  
Joanna Ross ◽  
Andrew J. Hearn ◽  
David W. Macdonald

Niche differentiation reduces competition between species and modifies predation risk such that species coexistence is promoted. Temporal partitioning is a type of niche differentiation that has only relatively recently been specifically investigated. In this chapter, data from 515 camera trap stations from Sabah, Malaysian Borneo is used to describe the presence, habitat associations and activity patterns of Bornean carnivores and to investigate temporal partitioning between species. Primary and old logged forest were the most species rich sites and small forest fragments and oil palm plantations supported the fewest species. Species’ activity patterns within families were more similar than those between families. Only the masked palm civet and sun bear showed variation in activity among habitats. Considering the species as rough trophic groups rather than families revealed that each group contained both diurnal and nocturnal species, which presumably helps to promote coexistence between the musteloids and other species in each group.


Sign in / Sign up

Export Citation Format

Share Document