Methods for determining spinal flexion/extension, lateral bending, and axial rotation from marker coordinate data: Analysis and refinement

1996 ◽  
Vol 15 (1) ◽  
pp. 55-78 ◽  
Author(s):  
Neil R. Crawford ◽  
Gary T. Yamaguchi ◽  
Curtis A. Dickman
Author(s):  
Héctor E Jaramillo S

The annulus fibrosus has substantial variations in its geometrical properties (among individuals and between levels), and plays an important role in the biomechanics of the spine. Few works have studied the influence of the geometrical properties including annulus area, anterior / posterior disc height, and over the range of motion, but in general these properties have not been reported in the finite element models. This paper presents a probabilistic finite element analyses (Abaqus 6.14.2) intended to assess the effects of the average disc height ( hp) and the area ( A) of the annulus fibrosus on the biomechanics of the lumbar spine. The annulus model was loaded under flexion, extension, lateral bending, and axial rotation and analyzed for different combinations of hpand A in order to obtain their effects over the range of motion. A set of 50 combinations of hp(mean = 18.1 mm, SD = 3.5 mm) and A (mean = 49.8%, SD = 4.6%) were determined randomly according to a normal distribution. A Yeoh energy function was used for the matrix and an exponential function for the fibers. The range of motion was more sensitive to hpthan to A. With regard to the range of motion the segment was more sensitive in the following order: flexion, axial rotation, extension, and lateral bending. An increase of the hpproduces an increase of the range of motion, but this decreases when A increases. Comparing the range of motion with the experimental data, on average, 56.0% and 73.0% of the total of data were within the experimental range for the L4–L5 and L5–S1 segments, respectively. Further, an analytic equation was derived to obtain the range of motion as a function of the hpand A. This equation can be used to calibrate a finite element model of the spine segment, and also to understand the influence of each geometrical parameter on the range of motion.


2012 ◽  
Vol 17 (3) ◽  
pp. 232-242 ◽  
Author(s):  
Prasath Mageswaran ◽  
Fernando Techy ◽  
Robb W. Colbrunn ◽  
Tara F. Bonner ◽  
Robert F. McLain

Object The object of this study was to evaluate the effect of hybrid dynamic stabilization on adjacent levels of the lumbar spine. Methods Seven human spine specimens from T-12 to the sacrum were used. The following conditions were implemented: 1) intact spine; 2) fusion of L4–5 with bilateral pedicle screws and titanium rods; and 3) supplementation of the L4–5 fusion with pedicle screw dynamic stabilization constructs at L3–4, with the purpose of protecting the L3–4 level from excessive range of motion (ROM) and to create a smoother motion transition to the rest of the lumbar spine. An industrial robot was used to apply continuous pure moment (± 2 Nm) in flexion-extension with and without a follower load, lateral bending, and axial rotation. Intersegmental rotations of the fused, dynamically stabilized, and adjacent levels were measured and compared. Results In flexion-extension only, the rigid instrumentation at L4–5 caused a 78% decrease in the segment's ROM when compared with the intact specimen. To compensate, it caused an increase in motion at adjacent levels L1–2 (45.6%) and L2–3 (23.2%) only. The placement of the dynamic construct at L3–4 decreased the operated level's ROM by 80.4% (similar stability as the fusion at L4–5), when compared with the intact specimen, and caused a significant increase in motion at all tested adjacent levels. In flexion-extension with a follower load, instrumentation at L4–5 affected only a subadjacent level, L5–sacrum (52.0%), while causing a reduction in motion at the operated level (L4–5, −76.4%). The dynamic construct caused a significant increase in motion at the adjacent levels T12–L1 (44.9%), L1–2 (57.3%), and L5–sacrum (83.9%), while motion at the operated level (L3–4) was reduced by 76.7%. In lateral bending, instrumentation at L4–5 increased motion at only T12–L1 (22.8%). The dynamic construct at L3–4 caused an increase in motion at T12–L1 (69.9%), L1–2 (59.4%), L2–3 (44.7%), and L5–sacrum (43.7%). In axial rotation, only the placement of the dynamic construct at L3–4 caused a significant increase in motion of the adjacent levels L2–3 (25.1%) and L5–sacrum (31.4%). Conclusions The dynamic stabilization system displayed stability characteristics similar to a solid, all-metal construct. Its addition of the supraadjacent level (L3–4) to the fusion (L4–5) did protect the adjacent level from excessive motion. However, it essentially transformed a 1-level lumbar fusion into a 2-level lumbar fusion, with exponential transfer of motion to the fewer remaining discs.


2008 ◽  
Vol 9 (3) ◽  
pp. 296-300 ◽  
Author(s):  
Michael A. Finn ◽  
Daniel R. Fassett ◽  
Todd D. Mccall ◽  
Randy Clark ◽  
Andrew T. Dailey ◽  
...  

Object Stabilization with rigid screw/rod fixation is the treatment of choice for craniocervical disorders requiring operative stabilization. The authors compare the relative immediate stiffness for occipital plate fixation in concordance with transarticular screw fixation (TASF), C-1 lateral mass and C-2 pars screw (C1L-C2P), and C-1 lateral mass and C-2 laminar screw (C1L-C2L) constructs, with and without a cross-link. Methods Ten intact human cadaveric spines (Oc–C4) were prepared and mounted in a 7-axis spine simulator. Each specimen was precycled and then tested in the intact state for flexion/extension, lateral bending, and axial rotation. Motion was tracked using the OptoTRAK 3D tracking system. The specimens were then destabilized and instrumented with an occipital plate and TASF. The spine was tested with and without the addition of a cross-link. The C1L-C2P and C1L-C2L constructs were similarly tested. Results All constructs demonstrated a significant increase in stiffness after instrumentation. The C1L-C2P construct was equivalent to the TASF in all moments. The C1L-C2L was significantly weaker than the C1L-C2P construct in all moments and significantly weaker than the TASF in lateral bending. The addition of a cross-link made no difference in the stiffness of any construct. Conclusions All constructs provide significant immediate stability in the destabilized occipitocervical junction. Although the C1L-C2P construct performed best overall, the TASF was similar, and either one can be recommended. Decreased stiffness of the C1L-C2L construct might affect the success of clinical fusion. This construct should be reserved for cases in which anatomy precludes the use of the other two.


2018 ◽  
Vol 29 (5) ◽  
pp. 515-524
Author(s):  
Michael D. Staudt ◽  
Doron Rabin ◽  
Ali A. Baaj ◽  
Neil R. Crawford ◽  
Neil Duggal

OBJECTIVEThere are limited data regarding the implications of revision posterior surgery in the setting of previous cervical arthroplasty (CA). The purpose of this study was to analyze segmental biomechanics in human cadaveric specimens with and without CA, in the context of graded posterior resection.METHODSFourteen human cadaveric cervical spines (C3–T1 or C2–7) were divided into arthroplasty (ProDisc-C, n = 7) and control (intact disc, n = 7) groups. Both groups underwent sequential posterior element resections: unilateral foraminotomy, laminoplasty, and finally laminectomy. Specimens were studied sequentially in two different loading apparatuses during the induction of flexion-extension, lateral bending, and axial rotation.RESULTSRange of motion (ROM) after artificial disc insertion was reduced relative to that in the control group during axial rotation and lateral bending (13% and 28%, respectively; p < 0.05) but was similar during flexion and extension. With sequential resections, ROM increased by a similar magnitude following foraminotomy and laminoplasty in both groups. Laminectomy had a much greater effect: mean (aggregate) ROM during flexion-extension, lateral bending, and axial rotation was increased by a magnitude of 52% following laminectomy in the setting of CA, compared to an 8% increase without arthroplasty. In particular, laminectomy in the setting of CA introduced significant instability in flexion-extension, characterized by a 90% increase in ROM from laminoplasty to laminectomy, compared to a 16% increase in ROM from laminoplasty to laminectomy without arthroplasty (p < 0.05).CONCLUSIONSForaminotomy and laminoplasty did not result in significant instability in the setting of CA, compared to controls. Laminectomy alone, however, resulted in a significant change in biomechanics, allowing for significantly increased flexion and extension. Laminectomy alone should be used with caution in the setting of previous CA.


2019 ◽  
Vol 10 (8) ◽  
pp. 973-981
Author(s):  
Raymond J. Hah ◽  
Ram Alluri ◽  
Paul A. Anderson

Study Design: Biomechanics study. Objectives: To evaluate the biomechanical advantage of interfacet allograft spacers in an unstable single-level and 2-level anterior cervical discectomy and fusion (ACDF) pseudoarthrosis model. Methods: Nine single-level and 8 two-level ACDF constructs were tested. Range of motion in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) at 1.5 N m were collected in 4 testing configurations: (1) intact spine, (2) ACDF with interbody graft and plate/screw, (3) ACDF with interbody graft and plate/loosened screws (loose condition), and (4) ACDF with interbody graft and plate/loosened screws supplemented with interfacet allograft spacers (rescue condition). Results: All fixation configurations resulted in statistically significant decreases in range of motion in all bending planes compared with the intact spine ( P < .05). One Level. Performing ACDF with interbody graft and plate on the intact spine reduced FE, LB, and AR 60.0%, 64.9%, and 72.9%, respectively. Loosening the ACDF screws decreased these reductions to 40.9%, 44.6%, and 52.1%. The addition of interfacet allograft spacers to the loose condition increased these reductions to 74.0%, 84.1%, and 82.1%. Two Level. Performing ACDF with interbody graft and plate on the intact spine reduced FE, LB, and AR 72.0%, 71.1%, and 71.2%, respectively. Loosening the ACDF screws decreased these reductions to 55.4%, 55.3%, and 51.3%. The addition of interfacet allograft spacers to the loose condition significantly increased these reductions to 82.6%, 91.2%, and 89.3% ( P < .05). Conclusions: Supplementation of a loose ACDF construct (pseudarthrosis model) with interfacet allograft spacers significantly increases stability and has potential applications in treating cervical pseudarthrosis.


2008 ◽  
Vol 63 (suppl_4) ◽  
pp. ONS303-ONS308 ◽  
Author(s):  
Şeref Doğan ◽  
Seungwon Baek ◽  
Volker K.H. Sonntag ◽  
Neil R. Crawford

Abstract Objective: To evaluate the differences in spinal stability and stabilizing potential of instrumentation after cervical corpectomy and spondylectomy. Methods: Seven human cadaveric specimens were tested: 1) intact; 2) after grafted C5 corpectomy and anterior C4–C6 plate; 3) after adding posterior C4–C6 screws/rods; 4) after extending posteriorly to C3–C7; 5) after grafted C5 spondylectomy, anterior C4–C6 plate, and posterior C4–C6 screws/rods; and 6) after extending posteriorly to C3–C7. Pure moments induced flexion, extension, lateral bending, and axial rotation; angular motion was recorded optically. Results: After corpectomy, anterior plating alone reduced the angular range of motion to a mean of 30% of normal, whereas added posterior short- or long-segment hardware reduced range of motion significantly more (P &lt; 0.003), to less than 5% of normal. Constructs with posterior rods spanning C3–C7 were stiffer than constructs with posterior rods spanning C4–C6 during flexion, extension, and lateral bending (P &lt; 0.05), but not during axial rotation (P &gt; 0.07). Combined anterior and C4–C6 posterior fixation exhibited greater stiffness after corpectomy than after spondylectomy during lateral bending (P = 0.019) and axial rotation (P = 0.001). Combined anterior and C3–C7 posterior fixation exhibited greater stiffness after corpectomy than after spondylectomy during extension (P = 0.030) and axial rotation (P = 0.0001). Conclusion: Circumferential fixation provides more stability than anterior instrumentation alone after cervical corpectomy. After corpectomy or spondylectomy, long circumferential instrumentation provides better stability than short circumferential fixation except during axial rotation. Circumferential fixation more effectively prevents axial rotation after corpectomy than after spondylectomy.


Neurosurgery ◽  
2001 ◽  
Vol 49 (6) ◽  
pp. 1399-1408 ◽  
Author(s):  
Andrzej Maciejczak ◽  
Michał Ciach ◽  
Maciej Radek ◽  
Andrzej Radek ◽  
Jan Awrejcewicz

ABSTRACT OBJECTIVE To determine whether the Cloward technique of cervical discectomy and fusion increases immediate postoperative stiffness of single cervical motion segment after application of interbody dowel bone graft. METHODS We measured and compared the stiffness of single-motion segments in cadaveric cervical spines before and immediately after interbody fusion with the Cloward technique. Changes in range of motion and stiffness of the C5–C6 segment were measured in a bending flexibility test (flexion, extension, lateral bending and axial rotation) before and after a Cloward procedure in 11 fresh-frozen human cadaveric specimens from the 4th through the 7th vertebrae. RESULTS The Cloward procedure produced a statistically significant increase in stiffness of the operated segment in flexion and lateral bending when compared with the intact spine. The less stiff the segment before the operation, the greater the increase in its postoperative flexural stiffness (statistically significant). The Cloward procedure produced nonuniform changes in rotational and extensional stiffness that increased in some specimens and decreased in others. CONCLUSION Our data demonstrate that Cloward interbody fusion increases immediate postoperative stiffness of an operated segment only in flexion and lateral bending in cadaveric specimens in an in vitro environment. Thus, Cloward fusion seems a relatively ineffective method for increasing the stiffness of a construct. This may add to discussion on the use of spinal instrumentation and postoperative management of patients after cervical discectomy, which varies from bracing in hard collars through immobilization in soft collars to no external orthosis.


2008 ◽  
Vol 9 (5) ◽  
pp. 444-449 ◽  
Author(s):  
Fabio Galbusera ◽  
Chiara M. Bellini ◽  
Francesco Costa ◽  
Roberto Assietti ◽  
Maurizio Fornari

Object Cervical instrumented fusion is currently performed using several fixation methods. In the present paper, the authors compare the following 4 implantation methods: a stand-alone cage, a cage supplemented by an anterior locking plate, a cage supplemented by an anterior dynamic plate, and a dynamic combined plate–cage device. Methods Four finite element models of the C4–7 segments were built, each including a different instrumented fixation type at the C5–6 level. A compressive preload of 100 N combined with a pure moment of 2.5 Nm in flexion, extension, right lateral bending, and right axial rotation was applied to the 4 models. The segmental principal ranges of motion and the load shared by the interbody cage were obtained for each simulation. Results The stand-alone cage showed the lowest stabilization capability among the 4 configurations investigated, but it was still significant. The cage supplemented by the locking plate was very stiff in all directions. The 2 dynamic plate configurations reduced flexibility in all directions compared with the intact case, but they left significant mobility in the implanted segment. These configurations were able to share a significant part of the load (up to 40% for the combined plate–cage) through the posterior cage. The highest risk of subsidence was obtained with the model of the stand-alone cage. Conclusions Noticeable differences in the results were detected for the 4 configurations. The actual clinical relevance of these differences, currently considered not of critical importance, should be investigated by randomized clinical trials.


2000 ◽  
Vol 92 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Annette Kettler ◽  
Hans-Joachim Wilke ◽  
Rupert Dietl ◽  
Matthias Krammer ◽  
Christianto Lumenta ◽  
...  

Object. The function of interbody fusion cages is to stabilize spinal segments primarily by distracting them as well as by allowing bone ingrowth and fusion. An important condition for efficient formation of bone tissue is achieving adequate spinal stability. However, the initial stability may be reduced due to repeated movements of the spine during everyday activity. Therefore, in addition to immediate stability, stability after cyclic loading is of remarkable relevance; however, this has not yet been investigated. The object of this study was to investigate the immediate stabilizing effect of three different posterior lumbar interbody fusion cages and to clarify the effect of cyclic loading on the stabilization. Methods. Before and directly after implantation of a Zientek, Stryker, or Ray posterior lumbar interbody fusion cage, 24 lumbar spine segment specimens were each evaluated in a spine tester. Pure lateral bending, flexion—extension, and axial rotation moments (± 7.5 Nm) were applied continuously. The motion in each specimen was measured simultaneously. The specimens were then loaded cyclically (40,000 cycles, 5 Hz) with an axial compression force ranging from 200 to 1000 N. Finally, they were tested once again in the spine tester. Conclusions. In general, a decrease of movement in all loading directions was noted after insertion of the Zientek and Ray cages and an increase of movement after implantation of a Stryker cage. In all three cage groups greater stability was demonstrated in lateral bending and flexion than in extension and axial rotation. Reduced stability during cyclic loading was observed in all three cage groups; however, loss of stability was most pronounced when the Ray cage was used.


Sign in / Sign up

Export Citation Format

Share Document