Purification and kinetic properties of alcohol dehydrogenase from yellow yam tubers (Dioscorea cayenensis)

Plant Science ◽  
1995 ◽  
Vol 107 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Ukazu Oluoha
Biomedicines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 50 ◽  
Author(s):  
Yanchao Jiang ◽  
Ting Zhang ◽  
Praveen Kusumanchi ◽  
Sen Han ◽  
Zhihong Yang ◽  
...  

Once ingested, most of the alcohol is metabolized in the liver by alcohol dehydrogenase to acetaldehyde. Two additional pathways of acetaldehyde generation are by microsomal ethanol oxidizing system (cytochrome P450 2E1) and catalase. Acetaldehyde can form adducts which can interfere with cellular function, leading to alcohol-induced liver injury. The variants of alcohol metabolizing genes encode enzymes with varied kinetic properties and result in the different rate of alcohol elimination and acetaldehyde generation. Allelic variants of these genes with higher enzymatic activity are believed to be able to modify susceptibility to alcohol-induced liver injury; however, the human studies on the association of these variants and alcohol-associated liver disease are inconclusive. In addition to acetaldehyde, the shift in the redox state during alcohol elimination may also link to other pathways resulting in activation of downstream signaling leading to liver injury.


1974 ◽  
Vol 141 (2) ◽  
pp. 469-475 ◽  
Author(s):  
Rolf Morosoli ◽  
Nicole Bégin-Heick

1. The cytosol alcohol dehydrogenase (alcohol–NAD oxidoreductase, EC 1.1.1.1) of Astasia longa was partially purified and characterized from cells grown in the presence of air+CO2 (95:5) or of O2+CO2 (95:5). 2. Under both these growth conditions, the cells contained a fraction, ADHII, which was characterized by its electrophoretic properties, by a high degree of resistance to heat inactivation, by a sharp pH optimum at 8.2 and by its kinetic properties. The estimated molecular weight of this fraction was approx. 150000, which is similar to that of yeast alcohol dehydrogenase. 3. Cells grown in air+CO2 (95:5) contain another fraction, ADHI, which can be further separated into two subfractions by polyacrylamide-gel electrophoresis and by DEAE-cellulose chromatography. This was termed fraction ‘ADHI-air’. 4. In addition to fraction ADHII, cells grown in the presence of O2 have a twofold increase in fraction ADHI-air activity as well as two new fractions that could not be demonstrated in air-grown cells. These new fractions which we have called fraction ‘ADHI-O2’, account for about 10% of the total activity. 5. The ADHI fractions (air) and (O2) have similar broad pH–activity curves and similar kinetic properties, both having a lower Km for ethanol and NAD than fraction ADHII. However, they differ from each other with respect to their activity with various substrates. The estimated molecular weight of these two ADHI fractions and their chromatographic behaviour on hydroxyapatite and on DEAE-cellulose also distinguish them.


Sign in / Sign up

Export Citation Format

Share Document