Oscillatory flow over a circular cylinder close to a plane boundary

1996 ◽  
Vol 18 (5) ◽  
pp. 269-288 ◽  
Author(s):  
M F Wybrow ◽  
B Yan ◽  
N Riley
2016 ◽  
Author(s):  
Adnan Munir ◽  
Ming Zhao ◽  
Helen Wu

This paper presents a numerical study of flow around an elastically mounted circular cylinder in close proximity to a plane boundary vibrating in the transverse and inline directions in an oscillatory flow. The Reynolds-Averaged Navier-Stokes (RANS) equations and the SST k-ω turbulent equations are solved using the Arbitrary Langrangian-Eulerian (ALE) scheme and Petrov-Galerkin Finite Element Method for simulating the flow. The equation of motion is solved using the fourth-order Runge-Kutta method to find the displacements of the cylinder in the transverse and inline directions. The numerical model is validated against the previous results of vortex-induced vibration of an isolated circular cylinder in both cross-flow and inline directions. The flow model is further extended to study the vortex-induced vibration of a cylinder near a plane boundary with a very small gap ratio (e/D) of 0.01, with D and e being the diameter and the gap between the cylinder and the plane boundary, respectively. Simulations are carried out for two Keulegan-Carpenter (KC) numbers of 5 and 10 and a wide range of reduced velocities. It is observed that both the KC number and the reduced velocity affect the vibration of the cylinder significantly.


1996 ◽  
Vol 7 (6) ◽  
pp. 545-558 ◽  
Author(s):  
M. F. Wybrow ◽  
N. Riley

Oscillatory flow over a circular cylinder, or part-cylinder, placed on a plane boundary, when the Strouhal and streaming Reynolds numbers are large, is considered. The solution is developed in matching inner and outer boundary layers. A steady streaming motion in the outer layer can lead to a net flow away from the cylinder along the plane boundary. A simple experiment substantiates this prediction, and the implications for bed-scouring are examined.


2018 ◽  
Vol 844 ◽  
pp. 127-161 ◽  
Author(s):  
Chengwang Xiong ◽  
Liang Cheng ◽  
Feifei Tong ◽  
Hongwei An

Oscillatory flow around a circular cylinder close to a plane boundary is numerically investigated at low-to-intermediate Keulegan–Carpenter ($KC$) and Stokes numbers ($\unicode[STIX]{x1D6FD}$) for different gap-to-diameter ratios ($e/D$). A set of unique flow regimes is observed and classified based on the established nomenclature in the ($KC,\unicode[STIX]{x1D6FD}$)-space. It is found that the flow is not only influenced by $e/D$ but also by the ratio of the thickness of the Stokes boundary layer ($\unicode[STIX]{x1D6FF}$) to the gap size (e). At relatively large $\unicode[STIX]{x1D6FF}/e$ values, vortex shedding through the gap is suppressed and vortices are only shed from the top of the cylinder. At intermediate values of $\unicode[STIX]{x1D6FF}/e$, flow through the gap is enhanced, resulting in horizontal gap vortex shedding. As $\unicode[STIX]{x1D6FF}/e$ is further reduced below a critical value, the influence of $\unicode[STIX]{x1D6FF}/e$ becomes negligible and the flow is largely dependent on $e/D$. A hysteresis phenomenon is observed for the transitions in the flow regime. The physical mechanisms responsible for the hysteresis and the variation of marginal stability curves with $e/D$ are explored at $KC=6$ through specifically designed numerical simulations. The Stokes boundary layer over the plane boundary is found to be responsible for the relatively large hysteresis range over $0.25<e/D<1.0$. Three mechanisms have been identified to the change of the marginal stability curve over $e/D$, which are the blockage effect due to the geometry setting, the favourable pressure gradient over the gap and the location of the leading eigenmode relative to the cylinder.


1991 ◽  
Vol 225 ◽  
pp. 271-300 ◽  
Author(s):  
B. M. Sumer ◽  
B. L. Jensen ◽  
J. Fredsøe

This study deals with the flow around a circular cylinder placed near a plane wall and exposed to an oscillatory flow. The study comprises instantaneous pressure distribution measurements around the cylinder at high Reynolds numbers (mostly at Re ∼ 105) and a flow visualization study of vortex motions at relatively smaller Reynolds numbers (Re ∼ 103–104). The range of the gap-to-diameter ratio is from 0 to 2 for the pressure measurements and from 0 to 25 for the flow visualization experiments. The range of the Keulegan–Carpenter number KC is from 4 to 65 for the pressure measurements and from 0 to 60 for the flow visualization tests. The details of vortex motions around the cylinder are identified for specific values of the gap-to-diameter ratio and for the KC regimes known from research on wall-free cylinders. The findings of the flow visualization study are used to interpret the variations in pressure with time around the pipe. The results indicate that the flow pattern and the pressure distribution change significantly because of the close proximity of the boundary where the symmetry in the formation of vortices breaks down, and also the characteristic transverse vortex street observed for wall-free cylinders for 7 < KC < 13 disappears. The results further indicate that the vortex shedding persists for smaller and smaller values of the gap-to-diameter ratio, as KC is decreased. The Strouhal frequency increases with decreasing gap-to-diameter ratio. The increase in the Strouhal frequency with respect to its wall-free-cylinder value can be as much as 50% when the cylinder is placed very close to the wall with a gap-to-diameter ratio of O(0.1).


1997 ◽  
Vol 345 ◽  
pp. 101-131
Author(s):  
M. D. KUNKA ◽  
M. R. FOSTER

Because of the importance of oscillatory components in the oncoming flow at certain oceanic topographic features, we investigate the oscillatory flow past a circular cylinder in an homogeneous rotating fluid. When the oncoming flow is non-reversing, and for relatively low-frequency oscillations, the modifications to the equivalent steady flow arise principally in the ‘quarter layer’ on the surface of the cylinder. An incipient-separation criterion is found as a limitation on the magnitude of the Rossby number, as in the steady-flow case. We present exact solutions for a number of asymptotic cases, at both large frequency and small nonlinearity. We also report numerical solutions of the nonlinear quarter-layer equation for a range of parameters, obtained by a temporal integration. Near the rear stagnation point of the cylinder, we find a generalized velocity ‘plateau’ similar to that of the steady-flow problem, in which all harmonics of the free-stream oscillation may be present. Further, we determine that, for certain initial conditions, the boundary-layer flow develops a finite-time singularity in the neighbourhood of the rear stagnation point.


Sign in / Sign up

Export Citation Format

Share Document