Failure mode analysis of TiN-coated high speed steel: In situ scratch adhesion testing in the scanning electron microscope

1990 ◽  
Vol 41 (1) ◽  
pp. 31-49 ◽  
Author(s):  
Per Hedenqvist ◽  
Mikael Olsson ◽  
Staffan Jacobson ◽  
Staffan Söderberg
Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


2014 ◽  
Vol 881-883 ◽  
pp. 1049-1052 ◽  
Author(s):  
Nai Peng ◽  
Cheng Ji Deng ◽  
Hong Xi Zhu

In this paper, the effects of briquetting pressure on the performance of in-situ formed Sialon in Al2O3-C refractory bricks are investigated. The phase compositions and microstructure of the Al2O3-C refractory were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM).The results show the briquetting pressure hardly has effect on the phase of the sintered specimens, two new phases of Sialon with a Z value of 2 and SiC formed. The micrographs of Sialon crystals have the shape of both column and tabular column, but with a cone tip in the specimens sintered at 200MPa and 300MPa and smooth tip in specimens sintered at 400MPa and 500MPa.


Holzforschung ◽  
1996 ◽  
Vol 50 (6) ◽  
pp. 487-490 ◽  
Author(s):  
Josef Bodner ◽  
Gerhard Grüll ◽  
Michael Georg Schlag

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1700 ◽  
Author(s):  
Xi-Shu Wang ◽  
Chang-Hao Tan ◽  
Juan Ma ◽  
Xiao-Dong Zhu ◽  
Qing-Yuan Wang

The low cycle fatigue tests on the crack initiation and propagation of cast magnesium alloys with two small holes were carried out by using in-situ scanning electron microscope (SEM) observation technology. The fatigue crack propagation behaviors and fatigue life, which are affected by two small artificial through holes, including the distances between two holes and their locations, were discussed in detail based on the experimental results and the finite element analysis (FEA). The results indicated that the fatigue multi-cracks occurred chiefly at the edges of two holes and the main crack propagation was along the weak dendrite boundary with the plastic deformation vestiges on the surface of α-Mg phase of cast AM50 and AM60B alloys. The fatigue cracking characteristics of cast AZ91 alloy depended mainly on the brittle properties of β-Mg17Al12 phase, in which the multi-cracks occurred still at the edges of two holes and boundaries of β-Mg17Al12 phase. The fatigue crack initiation position of cast magnesium alloys depends strongly on the radius of curvature of through hole or stress concentration factor at the closed edges of two through holes. In addition, the fatigue multi-cracks were amalgamated for the samples with titled 45° of two small holes of cast Mg-Al alloys when the hole distance is less than 4D (D is the diameter of the small hole).


Sign in / Sign up

Export Citation Format

Share Document