Production and characterization of hydrogen-reduced submicron tungsten powders. Part II: Controlled decomposition of APT and hydrogen reduction of the oxides

Author(s):  
W.D. Schubert ◽  
E. Lassner
Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6006
Author(s):  
Eliana Paola Marín Castaño ◽  
José Brant de Campos ◽  
Ivan Guillermo Solórzano-Naranjo ◽  
Eduardo de Albuquerque Brocchi

Different methods of producing nanostructured materials at the laboratory scale have been studied using a variety of physical and chemical techniques, though the challenge here is the homogeneous distribution of the elements which also depends on the precursor elements. This work thus focused on the micro-analytical characterization of Cu–Ni–Co metallic nanoparticles produced by an alternative chemical route aiming to produce solid solution nanoparticles. This method was based on two steps: the co-formation of oxides by nitrates’ decomposition followed by their hydrogen reduction. Based on the initial composition of precursor nitrates, three homogeneous ternaries of the Ni, Cu and Co final alloy products were pre-established. Thus, the compositions in %wt of the synthesized alloy particles studied in this work are 24Cu–64Ni–12Co, 12Cu–64Ni–24Co and 10Cu–80Ni–10Co. Both precursor oxides and metallic powders were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM/EDS) and transmission electron microscopy (TEM). The results show that the synthesis procedure was successful since it produced a homogeneous material distributed in different particle sizes depending on the temperature applied in the reducing process. The final composition of the metallic product was consistent with what was theoretically expected. Resulting from reduction at the lower temperature of 300 ∘C, the main powder product consisted of particles with a spheroidal and eventually facetted morphology of 50 nm on average, which shared the same FCC crystal structure. Particles smaller than 100 nm in the Cu–Ni–Co alloy agglomerates were also observed. At a higher reduction temperature, the ternary powder developed robust particles of 1 micron in size, which are, in fact, the result of the coarsening of several nanoparticles.


2010 ◽  
Vol 89-91 ◽  
pp. 65-72 ◽  
Author(s):  
E.A. Brocchi ◽  
F.J. Moura ◽  
I.G. Solórzono ◽  
M.S. Motta

It is well recognized the importance of nano-structured materials in the present technological stage. Due to their unique properties these materials can be used in a large number of applications. One example is the growing interest in nanocomposites, in which a very fine dispersion of a ceramic phase in a metal matrix will significantly improve the material properties. In view of that, extensive studies have been carried out on a variety of materials such as alloys and different types of composites. Recently, the authors have developed a novel chemical method for in-situ formations of Cu-Al2O3 and Ni-Al2O3 nanoscale composites by decomposition of their mixed nitrate solutions, to co-form the nano oxides, followed by preferential reduction of CuO or NiO by hydrogen at very low temperature. Studies carried out by the authors on the kinetics of reduction of such fine oxides indicated that under low partial pressure of hydrogen (0.25 atm) in argon, the oxides of Ni and Cu can be reduced completely, in a low temperature range of 523 to 623 K. The composites containing nanosized metal-metal oxide particles have been found to be quite homogeneous in nature. In view of this, Cu-Ni and Ni-Co alloys was also produced by mixing the respective aqueous nitrate solutions, followed by decompositions of their nitrates to their mixed oxides and subsequent low temperature hydrogen reduction. In that context, the purpose of the present work is to address the fundamental aspects of the synthesis procedure, emphasizing the basic thermodynamics background of the two steps involved. Also, the work aims to illustrate the outcome, by presenting experimental conditions and providing relevant characterization of the obtained nano-materials, by means of electronic microscopy and X-Ray Diffraction. Examples are given in terms of the obtained nano-composites and alloys.


2019 ◽  
Vol 793 ◽  
pp. 352-359 ◽  
Author(s):  
Xi Zhu ◽  
Jigui Cheng ◽  
Pengqi Chen ◽  
Bangzheng Wei ◽  
Yufei Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document