scholarly journals Characterization of Ternary CuNiCo Metallic Nanoparticles Produced by Hydrogen Reduction

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6006
Author(s):  
Eliana Paola Marín Castaño ◽  
José Brant de Campos ◽  
Ivan Guillermo Solórzano-Naranjo ◽  
Eduardo de Albuquerque Brocchi

Different methods of producing nanostructured materials at the laboratory scale have been studied using a variety of physical and chemical techniques, though the challenge here is the homogeneous distribution of the elements which also depends on the precursor elements. This work thus focused on the micro-analytical characterization of Cu–Ni–Co metallic nanoparticles produced by an alternative chemical route aiming to produce solid solution nanoparticles. This method was based on two steps: the co-formation of oxides by nitrates’ decomposition followed by their hydrogen reduction. Based on the initial composition of precursor nitrates, three homogeneous ternaries of the Ni, Cu and Co final alloy products were pre-established. Thus, the compositions in %wt of the synthesized alloy particles studied in this work are 24Cu–64Ni–12Co, 12Cu–64Ni–24Co and 10Cu–80Ni–10Co. Both precursor oxides and metallic powders were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy (SEM/EDS) and transmission electron microscopy (TEM). The results show that the synthesis procedure was successful since it produced a homogeneous material distributed in different particle sizes depending on the temperature applied in the reducing process. The final composition of the metallic product was consistent with what was theoretically expected. Resulting from reduction at the lower temperature of 300 ∘C, the main powder product consisted of particles with a spheroidal and eventually facetted morphology of 50 nm on average, which shared the same FCC crystal structure. Particles smaller than 100 nm in the Cu–Ni–Co alloy agglomerates were also observed. At a higher reduction temperature, the ternary powder developed robust particles of 1 micron in size, which are, in fact, the result of the coarsening of several nanoparticles.

1997 ◽  
Vol 3 (S2) ◽  
pp. 1247-1248
Author(s):  
R. M. Fisher ◽  
J. Holbery ◽  
Barbara Reine

A major problem now hampering increased recycling of old cardboard containers (OCC), is the presence of significant amounts of polymeric materials such as adhesives, tapes, labels and wax which enter the pulp process stream along with the cardboard and paper that was collected for recycling. Many of these materials contain very fine particles of inorganic fillers and pigments. These various contaminant constituents combine in some, as yet unknown, manner to form an extremely gummy material that deposits on paper machine surfaces and sticks tenaciously (hence the term “Stickies”). The sticky blobs are very difficult to remove and increases machine downtime and maintenance costs as well as causing blemishes on the finished container board product Light optical image analysis, UV fluorescence, FTIR and electron microscopy are being used in consort with particle size measuring instruments, TGS and DSC thermal analysis techniques, FTIR infra-red spectroscopy as well as XRF (x-ray fluorescence spectroscopy ), XPS (x-ray photo emission spectroscopy) and classical contact angle determination methods as part of a broad program to characterize the physical and chemical nature of stickies in pulp slurries with the goal of removing them or alleviating their pronounced tendency to deposit on machinery and paper products.


2017 ◽  
Vol 23 (4) ◽  
pp. 741-750 ◽  
Author(s):  
Sibylle Schilling ◽  
Arne Janssen ◽  
Nestor J. Zaluzec ◽  
M. Grace Burke

AbstractThe capability to perform liquid in situ transmission electron microscopy (TEM) experiments provides an unprecedented opportunity to examine the real-time processes of physical and chemical/electrochemical reactions during the interaction between metal surfaces and liquid environments. This work describes the requisite steps to make the technique fully analytical, from sample preparation, through modifications of the electrodes, characterization of electrolytes, and finally to electrochemical corrosion experiments comparing in situ TEM to conventional bulk cell and microcell configurations.


2012 ◽  
Vol 18 (5) ◽  
pp. 1181-1189 ◽  
Author(s):  
Giovanni Borsoi ◽  
Martha Tavares ◽  
Rosário Veiga ◽  
Antonio Santos Silva

AbstractThe conservation and durability of historical renders must be carried out through compatible techniques and materials. An important operation is the restitution of historical renders cohesion, turned friable by the loss of binder, usually due to physical and/or chemical actions. Surface consolidation is based on the use of materials with aggregating properties. This operation is reached usually through the application of organic or mineral consolidants, but inorganic consolidants are becoming preferred due to better compatibility and durability. In this article two mineral compatible consolidation products were studied: a commercial suspension of calcium hydroxide nanoparticles in propanol and a limewater dispersion of ethyl silicate. Microscopy (optical and scanning electron microscopy) and X-ray microanalyses of the consolidation products and of the consolidated mortar specimens were carried out. To assess the mechanical properties and product's efficacy, analyses of the compression, flexural strength, and superficial hardness were performed. Microscopy results show that limewater dispersion of ethyl silicate forms platelike silica gels, which can interfere in product penetration. Otherwise, nanolime particles permit homogeneous distribution and optimum penetration on the treated substrate, improving cementing action and the agglomeration process.


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3985 ◽  
Author(s):  
Paulette Gómez-López ◽  
Noelia Lázaro ◽  
Clemente G. Alvarado-Beltrán ◽  
Antonio Pineda ◽  
Alina M. Balu ◽  
...  

In this study, the co-synthesis of TiO2 and Cu metallic nanoparticles obtained via one-pot cost-efficient hydrothermal process has been addressed. Different nanocatalysts with Cu contents were characterized by X-ray diffraction, nitrogen porosimetry, scanning electron microscopy, and transmission electron microscopy. The TiO2 and Cu metallic nanoparticles were synthesized with copper loading up to one (Cu/Ti atomic ratio). Synthesized catalysts exhibited pore sizes in the mesoporous range and high surface areas above 150 m2/g. The particle size for TiO2 presented a homogeneous distribution of approximately 8 nm, moreover, Cu nanoparticles varied from 12 to >100 nm depending on the metal loading. The nanostructured materials were successfully tested in the conversion of trans-ferulic acid into vanillin under sustainable conditions, achieving the best performance for 0.3 Cu/Ti atomic ratio (70% vanillin yield).


2007 ◽  
Vol 280-283 ◽  
pp. 657-660 ◽  
Author(s):  
Zhi Ping Zheng ◽  
Dong Xiang Zhou ◽  
Shu Ping Gong ◽  
Yun Xiang Hu ◽  
Guo Hua Huang

Ultrafine (Ba,Sr)TiO3-based powders used for making positive temperature coefficient of resistance (PTCR) were synthesized by two chemical steps: polyacrylamide gel process and liquid phase coating process. First, donor doped (Ba,Sr)TiO3 powders were synthesized by polyacrylamide gel process at rather low temperature, and the physical and chemical characteristics of the gels and the precursorpowders were investigated by DSC, TG, XRD and TEM. Secondly, acceptor and sintering aid were coated by an aqueous solution containing acceptor (Mn) and additive (Si). The characterization and sintering behavior of the semi-conducting powders and the PTC effect of ceramic samples prepared by the as-obtained powders were investigated.


2020 ◽  
Vol 21 (24) ◽  
pp. 9388
Author(s):  
Małgorzata Zienkiewicz-Strzałka ◽  
Anna Deryło-Marczewska

In this work, ultra-small and stable silver nanoparticles (AgNP) on chitosan biopolymer (BP/AgP) were prepared by in situ reduction of the diamminesilver(I) complex ([Ag(NH3)2]+) to create a biostatic membrane system. The small AgNP (3 nm) as a stable source of silver ions, their crystal form, and homogeneous distribution in the whole solid membrane were confirmed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The X-ray photoelectron spectroscopy (XPS) and Auger analysis were applied to investigate the elemental composition, concentration, and chemical state of surface atoms. It was found that ultra-small metallic nanoparticles might form a steady source of silver ions and enhance the biostatic properties of solid membranes. Ultra-small AgNP with disturbed electronic structure and plasmonic properties may generate interaction between amine groups of the biopolymer for improving the homogeneity of the nanometallic layer. In this work, the significant differences between the typical way (deposition of ex-situ-prepared AgNP) and the proposed in-situ synthesis approach were determined. The improved thermal stability (by thermogravimetry and differential scanning calorimetry (TG/DSC) analysis) for BP/AgP was observed and explained by the presence of the protective layer of a low-molecular silver phase. Finally, the antibacterial activity of the BP/AgP nanocomposite was tested using selected bacteria biofilms. The grafted membrane showed clear inhibition properties by destruction and multiple damages of bacteria cells. The possible mechanisms of biocidal activity were discussed, and the investigation of the AgNP influence on the bacteria body was illustrated by AFM measurements. The results obtained concluded that the biopolymer membrane properties were significantly improved by the integration with ultra-small Ag nanoparticles, which added value to its applications as a biostatic membrane system for filtration and separation issues.


2014 ◽  
Vol 805 ◽  
pp. 7-11
Author(s):  
C.M.B. Barros ◽  
D.C.R.E. Dantas ◽  
L.B.C. Fontes ◽  
A.C.F.M. Costa ◽  
K.M.S. Viana

This work aims to conduct a study of development and characterization of a new endodontic biociment, the MTA/HAp. To this was used MTA Angelus®and a HAp synthesized in the laboratory in the proportions by weight 99% MTA/1% HAp (BIOC 1) and 95% MTA/5% HAp (BIOC 5), where the hydroxyapatite was added in order to introduce MTA to the characteristic of osteoconduction. The tests for the characterization of new cement were: X-ray diffraction, scanning electron microscopy and radiographic appearance. The results showed that the new developed biociments were obtained efficiently, since they showed the same crystalline phases of its starting materials (mineral trioxide aggregate and hydroxyapatite), with a morphology consisting of agglomerates of homogeneous distribution of irregular size and shape particles pre-sintered spherical and radiopacity feasible to be used in endodontics.Keywords:biomaterial,sealer,mineraltrioxideaggregate,hydroxyapatite.


2006 ◽  
Vol 530-531 ◽  
pp. 715-719
Author(s):  
L.C. Morais ◽  
Jo Dweck ◽  
E.M. Gonçalves ◽  
Pedro M. Büchler

The aim of this paper was to study the characterization of sludge affected by different thermal treatment, on selected physical and chemical properties. Sludge incinerated ash has been fired at different temperatures. This material was fired at 1050 °C for 3 h and until a peak of 1010°C. After thermal treatment the ash were screened at 200 mesh. The ash was characterized by X-ray fluorescence and trace elements like Cr, Pb, Zn, Cu, and some oxides like quartz(SiO2), Al2O3, P2O5, Fe2O3 were found. Scanning electron microscopy (SEM) has shown one change of particle between 2μm at 90μm and apparent porosity.


2016 ◽  
Vol 30 (05) ◽  
pp. 1650043 ◽  
Author(s):  
Prasanta Dhak ◽  
Mrinal Kanti Adak ◽  
Debasis Dhak

Nanocrystalline Ba[Formula: see text]Ti[Formula: see text]La[Formula: see text]Mn[Formula: see text]O3, [[Formula: see text] = 0.006, 0.008, 0.01 and 0.05] (abbreviated hereafter as BTLM) by chemical route. The phase formation and purity were checked by X-ray diffraction (XRD) study and transmission electron microscopy (TEM). The grain morphology after sintering was studied by scanning electron microscopy (SEM). The crystallite sizes range from 21 nm to 30 nm, while the particle size ranges between 27 nm and 38 nm. The grain size 212 nm and grain density 96.8% were found to be maximum for BTLM [Formula: see text] = 0.05 and [Formula: see text] = 0.01, respectively. The temperature dependence of dielectric constants was found to be more diffused and the peak value of the dielectric constant was decreased and more flat with the increase of the substituent concentration. The tangent loss was found to be decreased and reached to the minimum value of 0.032 for BTLM [Formula: see text] = 0.05. The remnant polarization [Formula: see text], was 10 [Formula: see text]C/cm2 for BTLM [Formula: see text] = 0.01.


Sign in / Sign up

Export Citation Format

Share Document