Failure behaviour of plain weave fabric laminates under in-plane shear loading: effect of fabric geometry

1995 ◽  
Vol 30 (2) ◽  
pp. 179-192 ◽  
Author(s):  
V.K. Ganesh ◽  
N.K. Naik
1994 ◽  
Vol 16 (1) ◽  
pp. 3 ◽  
Author(s):  
WS Johnson ◽  
JE Masters ◽  
TK O'Brien ◽  
NK Naik ◽  
VK Ganesh

1981 ◽  
Vol 51 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Peter R. Lord ◽  
Martha E. Perez
Keyword(s):  

2011 ◽  
Vol 175-176 ◽  
pp. 465-468 ◽  
Author(s):  
Lei Shi ◽  
Hua Wu Liu ◽  
Ping Xu ◽  
Dang Feng Zhao

Plain weave fabrics of polyacrylonitrile pre-oxidation yarns (PANOF) were prepared by small rapier loom. The flame retardation properties, mechanical properties and wear behaviors of PANOF plain weave fabrics were tested. The limiting oxygen index (LOI) of these PANOF plain weave fabric samples was 31%, which meets the criterion of flame-retardant fabrics. These fabrics neither melt nor shrunk when left in flame for a short period of time and the fabric structures were well maintained. Compared with flammable polyacrylonitrile fabrics, the polyacrylonitrile pre-oxidation fabrics exhibited excellent flame retardation properties, with satisfactory mechanical properties and comfortable handle.


2018 ◽  
Vol 53 (2) ◽  
pp. 197-208 ◽  
Author(s):  
Shan-yuan Jiang ◽  
Hao Wang ◽  
Zhong-wei Wang

Variabilities of mesostructures existing in textile composites can affect their mechanical properties. Most of the deterministic mechanical models are based on the assumptions of ideal Representative Volume Element, which cannot predict the mechanical properties accurately. Two analytical models predicting the elastic constants of C/Epoxy plain-weave composites by considering the realistic mesostructures are presented in this paper. These models utilize the variable metric stochastic theory to introduce the fluctuations of yarn feature parameters (yarn path and elliptical cross-section parameters) into the model of macro elastic properties. C/Epoxy plain-weave composite is taken as an example to quantify the influences of realistic yarn feature parameters on the elastic constants of the composite. The predicted elastic constants by analytical models and finite element method are verified by the results of mechanical experiments. It can be concluded that for C/Epoxy plain-weave composite the stochastic fluctuations of yarn feature parameters reduce in-plane elastic moduli by a maximum of 4%, and increase the in-plane shear modulus and Poisson’s ratio by a maximum of 15% and 33%, respectively.


Sign in / Sign up

Export Citation Format

Share Document