New recombinant polypeptide for hepatitis C virus disease diagnosis; structural protein, non-structural protein and additional antigen fusion protein p

Vaccine ◽  
1994 ◽  
Vol 12 (3) ◽  
pp. 286
2007 ◽  
Vol 39 (10) ◽  
pp. 751-762 ◽  
Author(s):  
Qiongqiong HE ◽  
Ruixue CHENG ◽  
Zhuchu CHEN ◽  
Xuxian XIAO ◽  
Zhiqiang XIAO ◽  
...  

2015 ◽  
Vol 63 (3) ◽  
pp. 554-563 ◽  
Author(s):  
Sakura Akamatsu ◽  
C. Nelson Hayes ◽  
Hidenori Ochi ◽  
Takuro Uchida ◽  
Hiromi Kan ◽  
...  

Author(s):  
Ashfaq Ur Rehman ◽  
Guodong Zheng ◽  
Bozitao Zhong ◽  
Duan Ni ◽  
Jia-Yi Li ◽  
...  

Hepatitis C virus (HCV) is a notorious member of the enveloped, positive-strand RNA flavivirus family. Non-structural protein 5A (NS5A) plays a key role in HCV replication and assembly. NS5A is...


Author(s):  
Alaa Elgohary ◽  
Abdo Elfiky

Hepatitis C Virus (HCV) is the main causative factor for liver cirrhosis and the development of liver cancer, with a confirmed ~ 180 million infections worldwide. E2 is an HCV structural protein responsible for virus entry to the host cell. Heat Shock Protein A5 (HSPA5), also termed BiP and GRP78, is the master regulator of the unfolded protein response mechanism, where it mainly localizes in the lumen of the Endoplasmic Reticulum (ER) in normal conditions. Under the stress of HCV infection or carcinogenesis, HSPA5 is upregulated. Consequently, HSPA5 escapes the ER retention localization and translocates to the cytoplasm and plasma membrane. Pep42, a cyclic peptide that was reported to target explicitly cell-surface HSPA5 in vivo. Owing to the high sequence and structural conservation between the C554-C566 region of HCV E2 and the Pep42, then we propose that the HCV E2 C554-C566 region could be the recognition site. The motivation of this work is to predict the possible binding mode between HCV E2 and HSPA5 by implementing molecular docking to test such proposed binding. Docking results reveal the high potent binding of the HCV E2 C554-C566 region to HSPA5 substrate-binding domain β (SBDβ). Moreover, the full-length HCV E2 also exhibits high binding potency to HSPA5 SBDβ. Defining the binding mode between HCV E2 and HSPA5 is of significance, so one can interfere with such binding and reducing the viral infection.


2005 ◽  
Vol 13 (13) ◽  
pp. 1700 ◽  
Author(s):  
Li-Ying Zhang ◽  
Jun Cheng ◽  
Hong Deng ◽  
Yan Liu ◽  
Lin Wang

2012 ◽  
Vol 93 (2) ◽  
pp. 247-258 ◽  
Author(s):  
Anna Pasetto ◽  
Lars Frelin ◽  
Anette Brass ◽  
Anila Yasmeen ◽  
Sarene Koh ◽  
...  

Hepatitis C virus (HCV) is a major cause of severe liver disease, and one major contributing factor is thought to involve a dysfunction of virus-specific T-cells. T-cell receptor (TCR) gene therapy with HCV-specific TCRs would increase the number of effector T-cells to promote virus clearance. We therefore took advantage of HLA-A2 transgenic mice to generate multiple TCR candidates against HCV using DNA vaccination followed by generation of stable T-cell–BW (T-BW) tumour hybrid cells. Using this approach, large numbers of non-structural protein 3 (NS3)-specific functional T-BW hybrids can be generated efficiently. These predominantly target the genetically stable HCV genotype 1 NS31073–1081 CTL epitope, frequently associated with clearance of HCV in humans. These T-BW hybrid clones recognized the NS31073 peptide with a high avidity. The hybridoma effectively recognized virus variants and targeted cells with low HLA-A2 expression, which has not been reported previously. Importantly, high-avidity murine TCRs effectively redirected human non-HCV-specific T-lymphocytes to recognize human hepatoma cells with HCV RNA replication driven by a subgenomic HCV replicon. Taken together, TCR candidates with a range of functional avidities, which can be used to study immune recognition of HCV-positive targets, have been generated. This has implications for TCR-related immunotherapy against HCV.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 487 ◽  
Author(s):  
Audrey Boyer ◽  
Julie Dreneau ◽  
Amélie Dumans ◽  
Julien Burlaud-Gaillard ◽  
Anne Bull-Maurer ◽  
...  

During Hepatitis C virus (HCV) morphogenesis, the non-structural protein 2 (NS2) brings the envelope proteins 1 and 2 (E1, E2), NS3, and NS5A together to form a complex at the endoplasmic reticulum (ER) membrane, initiating HCV assembly. The nature of the interactions in this complex is unclear, but replication complex and structural proteins have been shown to be associated with cellular membrane structures called detergent-resistant membranes (DRMs). We investigated the role of DRMs in NS2 complex formation, using a lysis buffer combining Triton and n-octyl glucoside, which solubilized both cell membranes and DRMs. When this lysis buffer was used on HCV-infected cells and the resulting lysates were subjected to flotation gradient centrifugation, all viral proteins and DRM-resident proteins were found in soluble protein fractions. Immunoprecipitation assays demonstrated direct protein–protein interactions between NS2 and E2 and E1 proteins, and an association of NS2 with NS3 through DRMs. The well-folded E1E2 complex and NS5A were not associated, instead interacting separately with the NS2-E1-E2-NS3 complex through less stable DRMs. Core was also associated with NS2 and the E1E2 complex through these unstable DRMs. We suggest that DRMs carrying this NS2-E1-E2-NS3-4A-NS5A-core complex may play a central role in HCV assembly initiation, potentially as an assembly platform.


2001 ◽  
Vol 75 (3) ◽  
pp. 1348-1358 ◽  
Author(s):  
Jonny Wood ◽  
Robert M. Frederickson ◽  
Stanley Fields ◽  
Arvind H. Patel

ABSTRACT To identify proteins that can bind the 3′ untranslated region (UTR) of hepatitis C virus (HCV) we screened human cDNA libraries using theSaccharomyces cerevisiae three-hybrid system. Screening with an RNA sequence derived from the 3′-terminal 98 nucleotides (3′X region) of an infectious clone of HCV (H77c) yielded clones of human ribosomal proteins L22, L3, S3, and mL3, a mitochondrial homologue of L3. We performed preliminary characterization of the binding between the 3′X region and these proteins by a three-hybrid mating assay using mutant 3′X sequences. We have further characterized the interaction between 3′X and L22, since this protein is known to be associated with two small Epstein-Barr virus (EBV)-encoded RNA species (EBERs) which are abundantly produced in cells latently infected with EBV. The EBERs, which have similar predicted secondary structure to the HCV 3′X, assemble into ribonucleoprotein particles that include L22 and La protein. To confirm that L22 binds HCV 3′X we performed in vitro binding assays using recombinant L22 (expressed as a glutathioneS-transferase [GST] fusion protein) together with a 3′X riboprobe. The 3′X region binds to the GST-L22 fusion protein (but not to GST alone), and this interaction is subject to competition with unlabeled 3′X RNA. To establish the functional role played by L22 in internal ribosome entry site (IRES)-mediated translation of HCV sequences we performed translational analysis in HuH-7 cells using monocistronic and bicistronic reporter constructs. The relative amount of core-chloramphenicol acetyltransferase reporter protein translated under the control of the HCV IRES was stimulated in the presence of L22 and La when these proteins were supplied in trans.


Sign in / Sign up

Export Citation Format

Share Document