134 Pro-fibrinolytic activity associated heparins on human umbilical vein endothelial cell cultures (huvec) in vitro

1988 ◽  
Vol 2 ◽  
pp. 59 ◽  
Author(s):  
C.J. Chanquía ◽  
J. Fontcuberta ◽  
A. Fabra ◽  
M. Rutllant
2004 ◽  
Vol 64 (21) ◽  
pp. 7702-7705 ◽  
Author(s):  
Esterina Pascale ◽  
Graziella Cimino Reale ◽  
Ettore D’Ambrosio

1993 ◽  
Vol 265 (1) ◽  
pp. H131-H138 ◽  
Author(s):  
M. F. Ethier ◽  
V. Chander ◽  
J. G. Dobson

The effect of adenosine on proliferation of human endothelial cells was investigated by adding adenosine to the medium of cultures derived from human umbilical veins. Cell counts on cultures grown in 10 microM adenosine for 4–7 days were 41–53% greater than counts from control cultures. In contrast, 10 microM adenosine had no effect on growth of a human fibroblast cell strain (IMR-90). Neither inosine nor 2',5'-dideoxyadenosine influenced endothelial cell growth at concentrations of 0.1 or 10 microM. Addition of adenosine deaminase abolished the proliferative effect of added adenosine and inhibited proliferation by 16% in control cultures, suggesting that endogenous adenosine may enhance proliferation in culture. The adenosine receptor antagonist, 8-phenyltheophylline, at 0.1 and 1.0 microM blocked the enhanced proliferation caused by 10 microM adenosine. Addition of 10 microM adenosine enhanced DNA synthesis in endothelial cell cultures as indicated by an increased incorporation of [3H]thymidine into acid-insoluble cell material. The results indicate that addition of physiological concentrations of adenosine to human umbilical vein endothelial cell cultures stimulates proliferation, possibly via a surface receptor, and suggest that adenosine may be a factor for human endothelial cell growth and possibly angiogenesis.


2007 ◽  
Vol 342-343 ◽  
pp. 305-308 ◽  
Author(s):  
Sh.N. Ge ◽  
Jun Ying Chen ◽  
Yong Xiang Leng ◽  
Nan Huang

In prior work we have shown that titanium oxide (Ti-O) thin films have good blood compatibility. However, as well as being hemocompatible, biomaterials used in contact with blood should be cell compatible also. In the work described here, Ti-O films were synthesized using unbalanced magnetron sputtering (UBMS) and were modified by immobilizing laminin on the film surface for improving human umbilical vein endothelial cell (HUVEC) adhesion and growth. Scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR) and contact-angle measurements were used to investigate the surface characteristics of the Ti-O films and the modified Ti-O films. The results suggest that Laminin can be biochemically immobilized on the Ti-O film surface. The modified layer of Laminin can improve the hydrophilicity and wettability of Ti-O films. In vitro HUVEC investigations reveal that Laminin immobilized on the film surface greatly enhances cell adhesion and growth on Ti-O films.


Sign in / Sign up

Export Citation Format

Share Document