scholarly journals German Aerospace Center's advanced robotic technology for future lunar scientific missions

Author(s):  
Armin Wedler ◽  
Martin J. Schuster ◽  
Marcus G. Müller ◽  
Bernhard Vodermayer ◽  
Lukas Meyer ◽  
...  

The Earth's moon is currently an object of interest of many space agencies for unmanned robotic missions within this decade. Besides future prospects for building lunar gateways as support to human space flight, the Moon is an attractive location for scientific purposes. Not only will its study give insight on the foundations of the Solar System but also its location, uncontaminated by the Earth's ionosphere, represents a vantage point for the observation of the Sun and planetary bodies outside the Solar System. Lunar exploration has been traditionally conducted by means of single-agent robotic assets, which is a limiting factor for the return of scientific missions. The German Aerospace Center (DLR) is developing fundamental technologies towards increased autonomy of robotic explorers to fulfil more complex mission tasks through cooperation. This paper presents an overview of past, present and future activities of DLR towards highly autonomous systems for scientific missions targeting the Moon and other planetary bodies. The heritage from the Mobile Asteroid Scout (MASCOT), developed jointly by DLR and CNES and deployed on asteroid Ryugu on 3 October 2018 from JAXA's Hayabusa2 spacecraft, inspired the development of novel core technologies towards higher efficiency in planetary exploration. Together with the lessons learnt from the ROBEX project (2012–2017), where a mobile robot autonomously deployed seismic sensors at a Moon analogue site, this experience is shaping the future steps towards more complex space missions. They include the development of a mobile rover for JAXA's Martian Moons eXploration (MMX) in 2024 as well as demonstrations of novel multi-robot technologies at a Moon analogue site on the volcano Mt Etna in the ARCHES project. Within ARCHES, a demonstration mission is planned from the 14 June to 10 July 2021, 1 during which heterogeneous teams of robots will autonomously conduct geological and mineralogical analysis experiments and deploy an array of low-frequency antennas to measure Jovian and solar bursts. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades'.

Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


2020 ◽  
Vol 48 (1) ◽  
pp. 233-258
Author(s):  
Meenakshi Wadhwa ◽  
Timothy J. McCoy ◽  
Devin L. Schrader

At present, meteorites collected in Antarctica dominate the total number of the world's known meteorites. We focus here on the scientific advances in cosmochemistry and planetary science that have been enabled by access to, and investigations of, these Antarctic meteorites. A meteorite recovered during one of the earliest field seasons of systematic searches, Elephant Moraine (EET) A79001, was identified as having originated on Mars based on the composition of gases released from shock melt pockets in this rock. Subsequently, the first lunar meteorite, Allan Hills (ALH) 81005, was also recovered from the Antarctic. Since then, many more meteorites belonging to these two classes of planetary meteorites, as well as other previously rare or unknown classes of meteorites (particularly primitive chondrites and achondrites), have been recovered from Antarctica. Studies of these samples are providing unique insights into the origin and evolution of the Solar System and planetary bodies. ▪  Antarctic meteorites dominate the inventory of the world's known meteorites and provide access to new types of planetary and asteroidal materials. ▪  The first meteorites recognized to be of lunar and martian origin were collected from Antarctica and provided unique constraints on the evolution of the Moon and Mars. ▪  Previously rare or unknown classes of meteorites have been recovered from Antarctica and provide new insights into the origin and evolution of the Solar System.


Geosciences ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 12 ◽  
Author(s):  
Vera Assis Fernandes

The forward planning of the return of Humans to the lunar surface as envisioned by different national and collaborative space agencies requires consideration of the fragility and pristine nature of the lunar surface. Current international treaties are outdated and require immediate action for their update and amendment. This should be taken as an opportunity for self-reflection and potential censoring, enabling a mature, responsible, and iterated sequence of decisions prior to returning. The protocols developed for assessing the ethical and social impacts of Humans on the lunar surface will provide a blueprint for planning future exploration activities on other planetary bodies in the Solar System and beyond.


2019 ◽  
Vol 215 (8) ◽  
Author(s):  
Romain Tartèse ◽  
Mahesh Anand ◽  
Jérôme Gattacceca ◽  
Katherine H. Joy ◽  
James I. Mortimer ◽  
...  

AbstractThe Moon is the only planetary body other than the Earth for which samples have been collected in situ by humans and robotic missions and returned to Earth. Scientific investigations of the first lunar samples returned by the Apollo 11 astronauts 50 years ago transformed the way we think most planetary bodies form and evolve. Identification of anorthositic clasts in Apollo 11 samples led to the formulation of the magma ocean concept, and by extension the idea that the Moon experienced large-scale melting and differentiation. This concept of magma oceans would soon be applied to other terrestrial planets and large asteroidal bodies. Dating of basaltic fragments returned from the Moon also showed that a relatively small planetary body could sustain volcanic activity for more than a billion years after its formation. Finally, studies of the lunar regolith showed that in addition to containing a treasure trove of the Moon’s history, it also provided us with a rich archive of the past 4.5 billion years of evolution of the inner Solar System. Further investigations of samples returned from the Moon over the past five decades led to many additional discoveries, but also raised new and fundamental questions that are difficult to address with currently available samples, such as those related to the age of the Moon, duration of lunar volcanism, the lunar paleomagnetic field and its intensity, and the record on the Moon of the bombardment history during the first billion years of evolution of the Solar System. In this contribution, we review the information we currently have on some of the key science questions related to the Moon and discuss how future sample-return missions could help address important knowledge gaps.


2021 ◽  
Author(s):  
James Head

<p>The Earth’s Moon is a cornerstone and keystone in the understanding of the origin and evolution of the terrestrial, Earth-like planets.  It is a cornerstone in that most of the other paradigms for the origin, modes of crustal formation (primary, secondary and tertiary), bombardment history, role of impact craters and basins in shaping early planetary surfaces and fracturing and modifying the crust and upper mantle, volcanism and the formation of different types of secondary crust, and petrogenetic models where no samples are available, all have a fundamental foundation in lunar science.  The Moon is a keystone in that knowledge of the Moon holds upright the arch of our understand of the terrestrial planets. It is thus imperative to dedicate significant resources to the continued robotic and human exploration of this most accessible of other terrestrial planetary bodies, and to use this cornerstone and keystone as a way to frame critical questions about the Solar System as a whole, and to explore other planetary bodies to modify and strengthen the lunar paradigm.   </p> <p>What is the legacy, the long-term impact of our efforts? The Apollo Lunar Exploration Program revealed the Earth as a planet, showed the inextricable links of the Earth-Moon system, and made the Solar System our neighborhood. We now ask: What are our origins and where are we heading?: We seek to understand the origin and evolution of the Moon, the Moon’s links to the earliest history of Earth, and its lessons for exploration and understanding of Mars and other terrestrial planets. A basis for our motivation is the innate human qualities of curiosity and exploration, and the societal/species-level need to heed Apollo 16 Commander John Young’s warning that “Single-planet species don’t survive!”. These perspectives impel us to learn the lessons of off-Earth, long-term, long-distance resupply and self-sustaining presence, in order to prepare for the exploration of Mars and other Solar System destinations. </p> <p>Key questions in this lunar exploration endeavor based on a variety of studies and analyses (1-3) include:</p> <p>-How do planetary systems form and evolve over time and when did major events in our Solar System occur?</p> <p>How did planetary interiors differentiate and evolve through time, and how are interior processes expressed through surface-atmosphere interactions?</p> <p>-What processes shape planetary surfaces and how do these surfaces record Solar System history?</p> <p>-How do worlds become habitable and how is habitability sustained over time?</p> <p>-Why are the atmospheres and climates of planetary bodies so diverse, and how did they evolve over time?</p> <p>-Is there life elsewhere in the Solar System?</p> <p>Specific lunar goals and objectives will be outlined in this broad planetary science context.</p> <p> </p> <p>References: 1. Carle Pieters et al. (2018) http://www.planetary.brown.edu/pdfs/5480.pdf, 2. Lunar Exploration Analysis Group, https://www.lpi.usra.edu/leag/. 3) Erica Jawin et al. Planetary Science Priorities for the Moon in the Decade 2023-2033: Lunar Science is Planetary Science.</p>


Eos ◽  
2015 ◽  
Vol 96 ◽  
Author(s):  
David A. Kring

Robotic probes could help us collect samples from the Moon, potentially revealing the origins of our solar system.


2012 ◽  
Vol 10 (H16) ◽  
pp. 147-147
Author(s):  
Caroline Smith

AbstractMeteorites are some of the most important and valuable rocks available for scientific study. Approximately 43,000 meteorites are known on Earth and are egeologicalf samples of extraterrestrial bodies - meteorites are known to originate from asteroids, the Moon, Mars and possibly comets. With expanding exploration of our Solar System, meteorites provide the eground truthf to compare data collected by robotic missions with results gained from a variety of more accurate and precise techniques using laboratories on Earth. This talk will give an introduction to the history of meteorite science and the importance of meteorite collections to the field of meteoritics, planetary and solar system science. Curation of extraterrestrial samples is a particularly pertinent issue, especially with regards to particularly rare samples such as those from Mars like the recent Tissint meteorite. Future sample return missions to asteroids and Mars also pose siginificant challenges around the curation of these precious materials. Issues surrounding the curation of samples and how curation and curatorial actions can influence scientific studies will also be discussed.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1962 ◽  
Vol 14 ◽  
pp. 133-148 ◽  
Author(s):  
Harold C. Urey

During the last 10 years, the writer has presented evidence indicating that the Moon was captured by the Earth and that the large collisions with its surface occurred within a surprisingly short period of time. These observations have been a continuous preoccupation during the past years and some explanation that seemed physically possible and reasonably probable has been sought.


Sign in / Sign up

Export Citation Format

Share Document