scholarly journals Low Frequency Radio Astronomy from Earth Orbit

1990 ◽  
Vol 123 ◽  
pp. 508-508
Author(s):  
Kurt W. Weiler ◽  
Namir E. Kassim

AbstractLow frequency radio astronomy for the purpose of this discussion is defined as frequencies ≲100 MHz. Since the technology is fairly simple at these frequencies and even Jansky’s original observations were made at 20.5 MHz, there have been many years of research at these wavelengths. However, though radio astronomers have been working at low frequencies since the first days of science, the observing limitations and the move of much of the effort to ever shorter wavelengths has meant that most areas still remain to be fully exploited with modern techniques and instruments. In particular, the possibilities for pursuing the very lowest frequencies by interferometry of ground to space, in Earth orbit, or from the Moon promises a rebirth of work in this wavelength range.We present concepts for space-ground VLBI and a fully space-based array in high Earth orbit to pursue the astrophysics which can only be probed at these frequencies. An Orbiting Low Frequency Radio Astronomy Satellite (OLFRAS) and a Low Frequency Space Array (LFSA) are two concepts which will open this last, poorly explored area of astronomy at relatively low cost and well within the limits of current technology.

2002 ◽  
Vol 199 ◽  
pp. 488-489
Author(s):  
D. L. Jones

The GMRT represents a dramatic improvement in ground-based observing capabilities for low frequency radio astronomy. At sufficiently low frequencies, however, no ground-based facility will be able to produce high resolution images while looking through the ionosphere. A space-based array will be needed to explore the objects and processes which dominate the sky at the lowest radio frequencies. An imaging radio interferometer based on a large number of small, inexpensive satellites would be able to track solar radio bursts associated with coronal mass ejections out to the distance of Earth, determine the frequency and duration of early epochs of nonthermal activity in galaxies, and provide unique information about the interstellar medium.


Author(s):  
Kristian Zarb Adami ◽  
I. O. Farhat

This work sketches a possible design architecture of a low-frequency radio interferometer located on the lunar surface. The design has evolved from single antenna experiments aimed at the global signal detection of the epoch of reionization (EoR) to the square kilometre array (SKA) which, when complete, will be capable of imaging the highly red-shifted H 1 -signal from the cosmic dawn through to the EoR. However, due to the opacity of the ionosphere below 10 MHz and the anthropogenic radio-frequency interference, these terrestrial facilities are incapable of detecting pre-ionization signals and the moon becomes an attractive location to build a low-frequency radio interferometer capable of detecting such cosmological signals. Even though there are enormous engineering challenges to overcome, having this scientific facility on the lunar surface also opens up several new exciting possibilities for low-frequency radio astronomy. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades’.


Author(s):  
Zety Sharizat Hamidi ◽  
N.N.M. Shariff ◽  
C. Monstein

Monitoring the Sun reveals a variety of fascinating and complex physical phenomena which are being studied mainly by analyzing its emission. Solar activity has an impact with space weather. The characteristic features of the climate of Malaysia are uniform temperature, very high humidity and copious rainfall. It has an average of temperature of 26.7 °C. Therefore, it is suitable to monitor the Sun. In following work, we will emphasize the development of solar astronomy in Malaysia. The ground based observation (i) optical and (ii) radio are the main region that we focused on. Optical observation has started earlier comparing with radio observation. In optical region it covers from 400 – 700 nm while in radio region, we focus from 45 MHz to 870 MHz. The number of observatories is increasing. A dedicated work to understand the Sun activity in radio region is a part of an initiative of the United Nations together with NASA in order to support developing countries participating in „Western Science‟ research. Realize how important for us to keep doing a research about the solar bursts, by using the new radio spectrometer, CALLISTO (Compound Low Cost Low Frequency Transportable Observatories) spectrometer. Malaysia is one of the earliest country from South-East Asia (ASEAN) that involve this research. One of the advantages to start the solar monitoring in Malaysia is because our strategic location as equator country that makes possible to observing a Sun for 12 hours daily throughout a year. We strongly believe that Malaysia as one of contributor of solar activity data through E-CALLISTO network. This is a very good start for developing a radio astronomy in Malaysia. With the implementation of 45 MHz - 870 MHz CALLISTO systems and development of solar burst monitoring network, a new wavelength regime is becoming available for solar radio astronomy. Overall, this article presents an overview of optical and radio astronomy in Malaysia. With the present level of the international collaboration, it is believed that the potential involvement of local and international scientist in solar astrophysics will increase.


Author(s):  
S. J. Tingay ◽  
M. Sokolowski ◽  
R. Wayth ◽  
D. Ung

Abstract We present the first survey of radio frequency interference (RFI) at the future site of the low frequency Square Kilometre Array (SKA), the Murchison Radio-astronomy Observatory (MRO), that both temporally and spatially resolves the RFI. The survey is conducted in a 1 MHz frequency range within the FM band, designed to encompass the closest and strongest FM transmitters to the MRO (located in Geraldton, approximately 300 km distant). Conducted over approximately three days using the second iteration of the Engineering Development Array in an all-sky imaging mode, we find a range of RFI signals. We are able to categorise the signals into: those received directly from the transmitters, from their horizon locations; reflections from aircraft (occupying approximately 13% of the observation duration); reflections from objects in Earth orbit; and reflections from meteor ionisation trails. In total, we analyse 33 994 images at 7.92 s time resolution in both polarisations with angular resolution of approximately 3.5 $^{\circ}$ , detecting approximately forty thousand RFI events. This detailed breakdown of RFI in the MRO environment will enable future detailed analyses of the likely impacts of RFI on key science at low radio frequencies with the SKA.


Geophysics ◽  
2020 ◽  
pp. 1-62
Author(s):  
Shotaro Nakayama ◽  
Gerrit Blacquière

Acquisition of incomplete data, i.e., blended, sparsely sampled, and narrowband data, allows for cost-effective and efficient field seismic operations. This strategy becomes technically acceptable, provided that a satisfactory recovery of the complete data, i.e., deblended, well-sampled and broadband data, is attainable. Hence, we explore a machine-learning approach that simultaneously performs suppression of blending noise, reconstruction of missing traces and extrapolation of low frequencies. We apply a deep convolutional neural network in the framework of supervised learning where we train a network using pairs of incomplete-complete datasets. Incomplete data, which are never used for training and employ different subsurface properties and acquisition scenarios, are subsequently fed into the trained network to predict complete data. We describe matrix representations indicating the contributions of different acquisition strategies to reducing the field operational effort. We also illustrate that the simultaneous implementation of source blending, sparse geometry and band limitation leads to a significant data compression where the size of the incomplete data in the frequency-space domain is much smaller than the size of the complete data. This reduction is indicative of survey cost and duration that our acquisition strategy can save. Both synthetic and field data examples demonstrate the applicability of the proposed approach. Despite the reduced amount of information available in the incomplete data, the results obtained from both numerical and field data cases clearly show that the machine-learning scheme effectively performs deblending, trace reconstruction, and low-frequency extrapolation in a simultaneous fashion. It is noteworthy that no discernible difference in prediction errors between extrapolated frequencies and preexisting frequencies is observed. The approach potentially allows seismic data to be acquired in a significantly compressed manner, while subsequently recovering data of satisfactory quality.


2020 ◽  
Vol 2 (1) ◽  
pp. 16
Author(s):  
Guilherme Rezende ◽  
Fabricio Baptista

Piezoelectric transducers are used in a wide variety of applications, including damage detection in structural health monitoring (SHM) applications. Among the various methods for detecting structural damage, the electromechanical impedance (EMI) method is one of the most investigated in recent years. In this method, the transducer is typically excited with low frequency signals up to 500 kHz. However, recent studies have indicated the use of higher frequencies, usually above 1 MHz, for the detection of some types of damage and the monitoring of some structures’ characteristics that are not possible at low frequencies. Therefore, this study investigates the performance of low-cost piezoelectric diaphragms excited with high frequency signals for SHM applications based on the EMI method. Piezoelectric diaphragms have recently been reported in the literature as alternative transducers for the EMI method and, therefore, investigating the performance of these transducers at high frequencies is a relevant subject. Experimental tests were carried out with piezoelectric diaphragms attached to two aluminum bars, obtaining the impedance signatures from diaphragms excited with low and high frequency signals. The analysis was performed using the real part of the impedance signatures and two basic damage indices, one based on the Euclidean norm and the other on the correlation coefficient. The experimental results indicate that piezoelectric diaphragms are usable for the detection of structural damage at high frequencies, although the sensitivity decreases.


1998 ◽  
pp. 988-989
Author(s):  
D. L. Jones ◽  
K. W. Weiler

2002 ◽  
Vol 199 ◽  
pp. 407-414
Author(s):  
R.J. Sault

This paper reviews planetary radio astronomy at low frequencies. At least at frequencies observable from the Earth's surface, this field has been almost solely the study of Jovian magnetospheric emissions. With the discovery of extra-solar planets, and the potential for new telescopes with large collecting areas, we may well see more objects and emission mechanisms becoming detectable.


Sign in / Sign up

Export Citation Format

Share Document