Detection of the multidrug resistant phenotype in human tumours by monoclonal antibodies and the streptavidin-biotinylated phycoerythrin complex method

1989 ◽  
Vol 25 (4) ◽  
pp. 743-749 ◽  
Author(s):  
Manfred Volm ◽  
Thomas Efferth ◽  
Mihaly Bak ◽  
Anthony D. Ho ◽  
Jürgen Mattern
2018 ◽  
Vol 6 (8) ◽  
Author(s):  
Michele Mutti ◽  
Ágnes Sonnevend ◽  
Tibor Pál ◽  
Sini Junttila ◽  
Heinz Ekker ◽  
...  

ABSTRACT The sequence type 131 (ST131)- H 30 clone is responsible for a significant proportion of multidrug-resistant extraintestinal Escherichia coli infections. Recently, the C1-M27 clade of ST131- H 30, associated with bla CTX-M-27 , has emerged. The complete genome sequence of E. coli isolate 81009 belonging to this clone, previously used during the development of ST131-specific monoclonal antibodies, is reported here.


2000 ◽  
Vol 182 (8) ◽  
pp. 2311-2313 ◽  
Author(s):  
Donald L. Jack ◽  
Michael L. Storms ◽  
Jason H. Tchieu ◽  
Ian T. Paulsen ◽  
Milton H. Saier

ABSTRACT The Bacillus subtilis genome encodes seven homologues of the small multidrug resistance (SMR) family of drug efflux pumps. Six of these homologues are paired in three distinct operons, and coexpression in Escherichia coli of one such operon,ykkCD, but not expression of either ykkC orykkD alone, gives rise to a broad specificity, multidrug-resistant phenotype including resistance to cationic, anionic, and neutral drugs.


1996 ◽  
Vol 29 (4) ◽  
pp. 483-486 ◽  
Author(s):  
Atif Akdas ◽  
Levent N. Türkeri ◽  
Sevgi Küllü ◽  
Tufan Tarcan ◽  
Wael Sakr ◽  
...  

2019 ◽  
Vol 87 (9) ◽  
Author(s):  
Ermioni Kalfopoulou ◽  
Diana Laverde ◽  
Karmela Miklic ◽  
Felipe Romero-Saavedra ◽  
Suzana Malic ◽  
...  

ABSTRACTMultidrug-resistant enterococci are major causes of hospital-acquired infections. Immunotherapy with monoclonal antibodies (MAbs) targeting bacterial antigens would be a valuable treatment option in this setting. Here, we describe the development of two MAbs through hybridoma technology that target antigens from the most clinically relevant enterococcal species. Diheteroglycan (DHG), a well-characterized capsular polysaccharide ofEnterococcus faecalis, and the secreted antigen A (SagA), an immunogenic protein fromEnterococcus faecium, are both immunogens that have been proven to raise opsonic and cross-reactive antibodies against enterococcal strains. For this purpose, a conjugated form of the native DHG with SagA was used to raise the antibodies in mice, while enzyme-linked immunosorbent assay and opsonophagocytic assay were combined in the selection process of hybridoma cells producing immunoreactive and opsonic antibodies targeting the selected antigens. From this process, two highly specific IgG1(κ) MAbs were obtained, one against the polysaccharide (DHG.01) and one against the protein (SagA.01). Both MAbs exhibited good opsonic killing against the target bacterial strains: DHG.01 showed 90% killing againstE. faecalistype 2, and SagA.01 showed 40% killing againstE. faecium11231/6. In addition, both MAbs showed cross-reactivity toward otherE. faecalisandE. faeciumstrains. The sequences from the variable regions of the heavy and light chains were reconstructed in expression vectors, and the activity of the MAbs upon expression in eukaryotic cells was confirmed with the same immunological assays. In summary, we identified two opsonic MAbs against enterococci which could be used for therapeutic or prophylactic approaches against enterococcal infections.


Antibiotics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 119 ◽  
Author(s):  
Carole Ayoub Moubareck ◽  
Dalal Hammoudi Halat

Being a multidrug-resistant and an invasive pathogen, Acinetobacter baumannii is one of the major causes of nosocomial infections in the current healthcare system. It has been recognized as an agent of pneumonia, septicemia, meningitis, urinary tract and wound infections, and is associated with high mortality. Pathogenesis in A. baumannii infections is an outcome of multiple virulence factors, including porins, capsules, and cell wall lipopolysaccharide, enzymes, biofilm production, motility, and iron-acquisition systems, among others. Such virulence factors help the organism to resist stressful environmental conditions and enable development of severe infections. Parallel to increased prevalence of infections caused by A. baumannii, challenging and diverse resistance mechanisms in this pathogen are well recognized, with major classes of antibiotics becoming minimally effective. Through a wide array of antibiotic-hydrolyzing enzymes, efflux pump changes, impermeability, and antibiotic target mutations, A. baumannii models a unique ability to maintain a multidrug-resistant phenotype, further complicating treatment. Understanding mechanisms behind diseases, virulence, and resistance acquisition are central to infectious disease knowledge about A. baumannii. The aims of this review are to highlight infections and disease-producing factors in A. baumannii and to touch base on mechanisms of resistance to various antibiotic classes.


Sign in / Sign up

Export Citation Format

Share Document