A multi-resolution approach to the 3D reconstruction from an electron microscope tilt series solving the alignment problem without gold particles

1989 ◽  
Vol 30 (3) ◽  
pp. 337-348 ◽  
Author(s):  
Joachim Dengler
Author(s):  
Jian-Shing Luo ◽  
Chia-Chi Huang ◽  
Jeremy D. Russell

Abstract Electron tomography includes four main steps: tomography data acquisition, image processing, 3D reconstruction, and visualization. After acquisition, tilt-series alignments are performed. Two methods are used to align the tilt-series: cross-correlation and feature tracking. Normally, about 10-20 nm of fiducial markers, such as gold beads, are deposited onto one side of 100 mesh carbon-coated grids during the feature-tracking process. This paper presents a novel method for preparing electron tomography samples with gold beads inside to improve the feature tracking process and quality of 3D reconstruction. Results show that the novel electron tomography sample preparation method improves image alignment, which is essential for successful tomography in many contemporary semiconductor device structures.


2006 ◽  
Vol 154 (2) ◽  
pp. 144-167 ◽  
Author(s):  
Albert Lawrence ◽  
James C. Bouwer ◽  
Guy Perkins ◽  
Mark H. Ellisman

2009 ◽  
Vol 19 (4) ◽  
pp. 547-552 ◽  
Author(s):  
T. Starborg ◽  
Y. Lu ◽  
A. Huffman ◽  
D. F. Holmes ◽  
K. E. Kadler

2000 ◽  
Vol 6 (S2) ◽  
pp. 1148-1149
Author(s):  
U. Ziese ◽  
A.H. Janssen ◽  
T.P. van der Krift ◽  
A.G. van Balen ◽  
W.J. de Ruijter ◽  
...  

Electron tomography is a three-dimensional (3D) imaging method with transmission electron microscopy (TEM) that provides high-resolution 3D images of structural arrangements. Conventional TEM images are in first approximation mere 2D-projections of a 3D sample under investigation. With electron tomographya series of images is acquired of a sample that is tilted over a large angular range (±70°) with small angular tilt increments (so called tilt-series). For the subsequent 3D-reconstruction, the images of the tilt series are aligned relative to each other and the 3D-reconstruction is computed. Electron tomography is the only technique that can provide true 3D information with nm-scale resolution of individual and unique samples. For (cell) biology and material science applications the availability of high-resolution 3D images of structural arrangements within individual samples provides unique architectural information that cannot be obtained otherwise. Routine application of electron tomography will comprise a major revolutionary step forward in the characterization of complex materials and cellular arrangements.


2001 ◽  
Vol 7 (S2) ◽  
pp. 88-89
Author(s):  
Ingo Daberkow ◽  
Bernhard Feja ◽  
Peter Sparlinek ◽  
Hans R. Tietz

During the last decade, computation of a three-dimensional image from a tilt series (3D reconstruction) has become a well established method, of which a variety of implementations are available. The term “electron tomography” is now generally used for this type of data acquisition and 3D reconstruction. An overview over the techniques involved is given in.With the introduction of micro-processor-controlled TEMs and cooled slow-scan CCD cameras and with the progress in performance of high-speed computers, automation of complex imaging procedures became mainly a task of developing appropriate software, using the control facilities of the microscope. in this way, automated electron tomography was realized in 1990 at the Max- Planck-Institute for Biochemistry in Martinsried, and at about the same time at the University of California in San Francisco (UCSF). New techniques for automatic focusing and alignment, developed somewhat earlier , have been integrated in these automated tomography procedures. in the following we discuss the requirements of automatic data acquisition and the present implementation for several TEMs.


Sign in / Sign up

Export Citation Format

Share Document