Changes in abscisic acid content during stomatal closure in pearl millet (Pennisetum americanum (L.) Leeke)

1981 ◽  
Vol 21 (2) ◽  
pp. 121-127 ◽  
Author(s):  
I.E. Henson
1984 ◽  
Vol 35 (1) ◽  
pp. 99-109 ◽  
Author(s):  
I. E. HENSON ◽  
V. MAHALAKSHMI ◽  
G. ALAGARSWAMY ◽  
F. R. BIDINGER

2004 ◽  
Vol 16 (3) ◽  
pp. 155-161 ◽  
Author(s):  
Mara de Menezes de Assis Gomes ◽  
Ana Maria Magalhães Andrade Lagôa ◽  
Camilo Lázaro Medina ◽  
Eduardo Caruso Machado ◽  
Marcos Antônio Machado

Thirty-month-old 'Pêra' orange trees grafted on 'Rangpur' lemon trees grown in 100 L pots were submitted to water stress by the suspension of irrigation. CO2 assimilation (A), transpiration (E) and stomatal conductance (g s) values declined from the seventh day of stress, although the leaf water potential at 6:00 a.m. (psipd) and at 2:00 p.m. (psi2) began to decline from the fifth day of water deficiency. The CO2 intercellular concentration (Ci) of water-stressed plants increased from the seventh day, reaching a maximum concentration on the day of most severe stress. The carboxylation efficiency, as revealed by the ratio A/Ci was low on this day and did not show the same values of non-stressed plants even after ten days of rewatering. After five days of rewatering only psi pd and psi2 were similar to control plants while A, E and g s were still different. When psi2 decreases, there was a trend for increasing abscisic acid (ABA) concentration in the leaves. Similarly, stomatal conductance was found to decrease as a function of decreasing psi2. ABA accumulation and stomatal closure occurred when psi2 was lower than -1.0 MPa. Water stress in 'Pera´ orange trees increased abscisic acid content with consequent stomatal closure and decreased psi2 values.


1979 ◽  
Vol 6 (3) ◽  
pp. 249 ◽  
Author(s):  
BV Milborrow

The antitranspirants farnesol and phenylmercuric acetate increased abscisic acid (ABA) contents of spinach leaves by the same amount as wilting, and so this can account for stomatal closure. It is now proposed that leaf ABA contents are regulated by chloroplast permeability and a mechanism for this is described. ABA and its conjugate occur in the protoplasm of citrus fruit vesicle cells; considerably less is in the vacuolar sap.


1992 ◽  
Vol 100 (2) ◽  
pp. 692-698 ◽  
Author(s):  
Aga Schulze ◽  
Philip J. Jensen ◽  
Mark Desrosiers ◽  
J. George Buta ◽  
Robert S. Bandurski

1999 ◽  
Vol 50 (337) ◽  
pp. 1359-1364 ◽  
Author(s):  
D. J. Carrier ◽  
E. J. Kendall ◽  
C. A. Bock ◽  
J. E. Cunningham ◽  
D. I. Dunstan

2020 ◽  
Vol 40 (8) ◽  
pp. 1043-1057 ◽  
Author(s):  
Cecilia Brunetti ◽  
Tadeja Savi ◽  
Andrea Nardini ◽  
Francesco Loreto ◽  
Antonella Gori ◽  
...  

Abstract Drought compromises plant's ability to replace transpired water vapor with water absorbed from the soil, leading to extensive xylem dysfunction and causing plant desiccation and death. Short-term plant responses to drought rely on stomatal closure, and on the plant's ability to recover hydraulic functioning after drought relief. We hypothesize a key role for abscisic acid (ABA) not only in the control of stomatal aperture, but also in hydraulic recovery. Young plants of Populus nigra L. were used to investigate possible relationships among ABA, non-structural carbohydrates (NSC) and xylem hydraulic function under drought and after re-watering. In Populus nigra L. plants subjected to drought, water transport efficiency and hydraulic recovery after re-watering were monitored by measuring the percentage loss of hydraulic conductivity (PLC) and stem specific hydraulic conductivity (Kstem). In the same plants ABA and NSC were quantified in wood and bark. Drought severely reduced stomatal conductance (gL) and markedly increased the PLC. Leaf and stem water potential, and stem hydraulic efficiency fully recovered within 24 h after re-watering, but gL values remained low. After re-watering, we found significant correlations between changes in ABA content and hexoses concentration both in wood and bark. Our findings suggest a role for ABA in the regulation of stem carbohydrate metabolism and starch mobilization upon drought relief, possibly promoting the restoration of xylem transport capacity.


Sign in / Sign up

Export Citation Format

Share Document