Stress analysis of nonradial cylindrical shell intersections subjected to external loading

1996 ◽  
Vol 67 (2) ◽  
pp. 145-153 ◽  
Author(s):  
V.N. Skopinsky
Author(s):  
Lihua Liang ◽  
Zengliang Gao ◽  
Yangjian Xu ◽  
Kangda Zhang ◽  
Zhaohui Fan

Considering reinforcement pad and the cylindrical shell as an integral model and a contact model, stress analysis for opening-reinforcement structures of a cylindrical shell is performed by elastic and elastoplastic FEM. By comparison of two sub-models and two material constitutive relations (elastic and elastoplastic), the stress distribution of cylindrical shell intersections by the contact model is similar to that by the integral model, but there are some differences of the stress at contact surfaces of the shell and the reinforcement pad between by the contact model and by the integral model. In general, the stress analysis of the integral model for pad reinforcement can approximately represent that of the contact model. Finite element analyses for different nozzle diameters and different oblique angles in nozzle and cylinder shell intersections are carried out. The stress distribution and the maximum stress are affected by oblique angle. But the difference of the maximum stress intensity among different diameters is small.


2011 ◽  
Vol 138-139 ◽  
pp. 74-78
Author(s):  
Yue Qiang Qian ◽  
Fu Jun Liu ◽  
Zhang Wei Ling ◽  
Shuai Kong

In pressure vessels design, WRC107 provides a typical method of local stress analysis to supports and attachments. But influence of the rigidity of attachments on calculation is not considered. For fatigue analysis of round hollow attachment on cylindrical shell, equivalent stresses calculated by WRC107 were compared with those by finite element method. Three attachment thickness configurations, that half, equal, double of the shell thickness were tested. Results show that, in key point Au defined by WRC107 equivalent stress decreases while attachment rigidity increases, and in key point Cu, equivalent stress increases while attachment rigidity increases. When the thickness of attachment equals to that of shell, equivalent stress of WRC107 in Cu comes closest to FEM.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
L. Xue ◽  
G. E. O. Widera ◽  
Z. Sang

In an earlier paper (2009, “Burst Pressure of Pressurized Cylinders With the Hillside Nozzle,” ASME J. Pressure Vessel Technol., 131(4), p. 041204), an elastic-plastic large deflection analysis method was used to determine the burst pressure and fracture location of hillside cylindrical shell intersections by use of nonlinear finite element analysis. To verify the accuracy of the finite element results, experimental burst tests were carried out by pressurizing test vessels with nozzles to burst. Based on the agreement between the numerical simulations and experimental results of Wang et al. (2009, “Burst Pressure of Pressurized Cylinders With the Hillside Nozzle,” ASME J. Pressure Vessel Technol., 131(4), p. 041204), a parametric study is now carried out. Its purpose is to develop a correlation equation by investigating the relationship between various geometric parameters (d/D, D/T, and t/T) and the burst pressure. Forty-seven configurations, which are deemed to cover most of the practical cases, are chosen to perform this study. In addition, four different materials are employed to verify that the proposed equation can be employed for different materials. The results show that the proposed equation resulting from the parametric analysis can be employed to predict the static burst pressure of cylindrical shell intersections for a wide range of geometric ratios.


Author(s):  
Yuya Omiya ◽  
Toshiyuki Sawa

In designing bolted joints, it is necessary to know the contact stress distributions in bolted joints. Recently, high strength bolts have been used with a higher bolt preload. As the results, the permanent set occurs sometimes at the bearing surfaces of clamped parts in the bolted joint. In addition, when external loads such as tensile loads, transverse loads and bending moments are applied to the bolted joint, the permanent set can be extended at the bearing surfaces. As the permanent set increases, the reduction in the bolt preload increases. Thus, it is important to estimate the reduction in the bolt preload from the reliability stand point. However, no study on the permanent set at the bearing surface under the external loading taking into account the bending moment has been carried out. In this study, the stress distribution and the extension of the permanent set at the bearing surface of the T-flange bolted joint under the external tensile loading are examined using Finite Element Method (FEM), where two T-flanges are clamped with a hexagon bolt and a nut. Using the obtained results, an increment in the axial bolt force and the reduction in the bolt preload are estimated. For verification of the FEM stress analysis, the load factor of hexagon bolt was measured. The FEM results of the load factor (the ratio of the increment in the axial bolt force to the tensile load) and the axial bolt force are in a fairly good agreement with the experimental results.


2014 ◽  
Vol 21 (7) ◽  
pp. 2667-2672
Author(s):  
Arashmehr Jafar ◽  
Rahimi Gholamhossein ◽  
Rasouli Fazel

1971 ◽  
Vol 37 (294) ◽  
pp. 237-248 ◽  
Author(s):  
Yoshio ANDO ◽  
Kunihiro IIDA ◽  
Tadahiko KAWAI ◽  
Genki YAGAWA ◽  
Fumio KIKUCHI

Sign in / Sign up

Export Citation Format

Share Document