Parametric FEA Study of Burst Pressure of Cylindrical Shell Intersections

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
L. Xue ◽  
G. E. O. Widera ◽  
Z. Sang

In an earlier paper (2009, “Burst Pressure of Pressurized Cylinders With the Hillside Nozzle,” ASME J. Pressure Vessel Technol., 131(4), p. 041204), an elastic-plastic large deflection analysis method was used to determine the burst pressure and fracture location of hillside cylindrical shell intersections by use of nonlinear finite element analysis. To verify the accuracy of the finite element results, experimental burst tests were carried out by pressurizing test vessels with nozzles to burst. Based on the agreement between the numerical simulations and experimental results of Wang et al. (2009, “Burst Pressure of Pressurized Cylinders With the Hillside Nozzle,” ASME J. Pressure Vessel Technol., 131(4), p. 041204), a parametric study is now carried out. Its purpose is to develop a correlation equation by investigating the relationship between various geometric parameters (d/D, D/T, and t/T) and the burst pressure. Forty-seven configurations, which are deemed to cover most of the practical cases, are chosen to perform this study. In addition, four different materials are employed to verify that the proposed equation can be employed for different materials. The results show that the proposed equation resulting from the parametric analysis can be employed to predict the static burst pressure of cylindrical shell intersections for a wide range of geometric ratios.

2014 ◽  
Vol 633-634 ◽  
pp. 693-698
Author(s):  
Long Xin ◽  
Shi Chao Cui ◽  
Qi Lin Shu

In this paper, the ram of boring and milling machining center is taken as the research object. A new method that hydraulic pull rods compensation is proposed to solve the problem of deformation compensation of long stroke ram of boring and milling machining center. Firstly, the method of finite element analysis is used to get the laws of ram deformation and the relationship curve between the ram deformation and the stroke of ram. Secondly, the preliminary calculation value of pull rods compensation force is derived based on the theoretical analysis of material mechanics. The relationship curve between compensation force and the stroke of ram is obtained by finite element analysis and polynomial least squares method. Finally, the analyzed results are as follows: the laws of ram deformation distribution is accurately predicted by the used method, the deflection error of the ram is well controlled,and the machining precision is significantly improved.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Nidhi Dwivedi ◽  
Veerendra Kumar ◽  
Ashwani Shrivastava ◽  
Raji Nareliya

The main objective of this paper is to review various types of methods, formulae, and theories used for the calculation of burst strength of pressure vessel. The pressure at which the pressure vessel should burst if all of the specified design tolerances are at their minimum values is called burst pressure. Prediction of burst strength is the very important aspect in the pressure vessel design to avoid any disaster. The present study mainly focuses on various types of factors which tremendously affect the burst strength of pressure vessel.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Bingjun Gao ◽  
Xiaohui Chen ◽  
Xiaoping Shi ◽  
Junhua Dong

An important issue in engineering application of the “design by analysis” approach in pressure vessel design is how to decompose an overall stress field obtained by finite element analysis into different stress categories defined in the ASME B&PV Codes III and VIII-2. In many pressure vessel structures, it is difficult to obtain PL+Pb due to the lack of information about primary bending stress. In this paper, a simple approach to derive the primary bending stress from the finite element analysis was proposed with application examples and verifications. According to the relationship of the bending stress and applied loads or the relationship of the bending stress and displacement agreement, it is possible to identify loads causing primary bending stress for typical pressure vessel structures. By applying the load inducing primary bending stress alone and necessary superposition, the primary bending stress and corresponding stress intensity PL+Pb can be determined for vessel design, especially for axisymmetric problems.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1337-1345
Author(s):  
Chuan Zhao ◽  
Feng Sun ◽  
Junjie Jin ◽  
Mingwei Bo ◽  
Fangchao Xu ◽  
...  

This paper proposes a computation method using the equivalent magnetic circuit to analyze the driving force for the non-contact permanent magnet linear drive system. In this device, the magnetic driving force is related to the rotation angle of driving wheels. The relationship is verified by finite element analysis and measuring experiments. The result of finite element simulation is in good agreement with the model established by the equivalent magnetic circuit. Then experiments of displacement control are carried out to test the dynamic characteristic of this system. The controller of the system adopts the combination control of displacement and angle. The results indicate that the system has good performance in steady-state error and response speed, while the maximum overshoot needs to be reduced.


2019 ◽  
Vol 893 ◽  
pp. 1-5 ◽  
Author(s):  
Eui Soo Kim

Pressure vessels are subjected to repeated loads during use and charging, which can causefine physical damage even in the elastic region. If the load is repeated under stress conditions belowthe yield strength, internal damage accumulates. Fatigue life evaluation of the structure of thepressure vessel using finite element analysis (FEA) is used to evaluate the life cycle of the structuraldesign based on finite element method (FEM) technology. This technique is more advanced thanfatigue life prediction that uses relational equations. This study describes fatigue analysis to predictthe fatigue life of a pressure vessel using stress data obtained from FEA. The life prediction results areuseful for improving the component design at a very early development stage. The fatigue life of thepressure vessel is calculated for each node on the model, and cumulative damage theory is used tocalculate the fatigue life. Then, the fatigue life is calculated from this information using the FEanalysis software ADINA and the fatigue life calculation program WINLIFE.


2004 ◽  
Vol 01 (02) ◽  
pp. 309-328
Author(s):  
R. J. HO ◽  
S. A. MEGUID ◽  
R. G. SAUVÉ

This paper presents a unified novel technique for enforcing nonlinear beam-to-shell, beam-to-solid, and shell-to-solid constraints in explicit finite element formulations. The limitations of classical multi-point constraint approaches are examined at length, particularly in the context of explicit solution schemes. Novel formulation of a generalized constraint method that ensures proper element coupling is then presented, and its computer implementation in explicit integration algorithms is discussed. Crucial in this regard is the accurate and efficient representation of finite rotations, accomplished using an incremental rotation tensor. The results of some illustrative test cases show the accuracy and robustness of the newly developed algorithm for a wide range of deformation, including that in which large rotations are encountered. When compared to existing works, the salient features of the current method are in evidence.


Author(s):  
V. Ramirez-Elias ◽  
E. Ledesma-Orozco ◽  
H. Hernandez-Moreno

This paper shows the finite element simulation of a representative specimen from the firewall section in the AEROMARMI ESTELA M1 aircraft. This specimen is manufactured in glass and carbon / epoxy laminates. The specimen is subjected to a load which direction and magnitude are determined by a previous dynamic loads study [10], taking into account the maximum load factor allowed by the FAA (Federal Aviation Administration) for utilitarian aircrafts [11]. A representative specimen is manufactured with the same features of the firewall. Meanwhile a fix is built in order to introduce the load directions on the representative specimen. The relationship between load and displacement is plotted for this representative specimen, whence the maximum displacement at the specific load is obtained, afterwards it is compared with the finite element model, which is modified in its laminate thicknesses in order to decrease the deviation error; subsequently this features could be applied to perform the whole firewall analysis in a future model [10].


Author(s):  
Martin Muscat ◽  
Robert Hamilton

Bounding techniques for calculating shakedown loads are of great importance in design since this eliminates the need for performing full elasto-plastic cyclic loading analyses. The classical Melan’s lower bound theorem is widely used for calculating shakedown loads of pressure vessel components under proportional loading. Polizzotto extended the Melan’s theorem to the case of non-proportional loading acting on a structure. This paper presents a finite element method, based on Polizzotto’s theorem, to estimate the elastic shakedown load for a structure subjected to a combination of steady and cyclic mechanical loads. This method, called non-linear superposition, is then applied to investigate the shakedown behaviour of a pressure vessel component — a nozzle/cylinder intersection and that of a biaxially loaded square plate with a central hole. Results obtained for both problems are compared with those available in the literature and are verified by means of cyclic elasto-plastic finite element analysis.


Sign in / Sign up

Export Citation Format

Share Document