Effect of heparin on membrane associated clathrin basketwork of cultured cells derived from the stromal-vascular fraction of mouse brown adipose tissue

1987 ◽  
Vol 11 (9) ◽  
pp. 637-644 ◽  
Author(s):  
L AMENDE ◽  
S CHERNICK ◽  
G REED ◽  
E BLANCHETTEMACKIE
2020 ◽  
Author(s):  
Zan Huang ◽  
Zengdi Zhang ◽  
Ryan Heck ◽  
Ping Hu ◽  
Hezkiel Nanda ◽  
...  

SUMMARYIn humans, brown adipose tissue (BAT) undergoes progressive involution or atrophy with increasing age, as manifested by decreased prevalence and mass, transformation to white adipose tissue (WAT), and reduction in thermogenic activity. This involution process cannot be fully recapitulated in rodent models and thus underlying cellular mechanisms are poorly understood. Here, we show that the interscapular BAT (iBAT) in rabbits involutes rapidly in early life, similarly to that in humans. The transcriptomic remodeling and identity switch of mature adipocytes are accompanied with the loss of brown adipogenic competence of their precursor cells. Through single-cell RNA sequencing, we surveyed the heterogenous populations of mesenchymal cells within the stromal vascular fraction of rabbit and human iBAT. An analogous FSTL1high population of brown adipocyte progenitors exists in both species while gradually disappear during iBAT involution in rabbits. In mice, FSTL1 is highly expressed by adipocyte progenitors in iBAT and genetic deletion of FSTL1 causes defective WNT signaling and iBAT atrophy in neonates. Our results underscore the BAT-intrinsic contribution from FSTL1high progenitors to age-related tissue involution and point to a potential therapeutic approach for obesity and its comorbidities.HIGHLIGHTSRabbit BAT irreversibly transforms to WAT before puberty.iBAT adipocyte progenitors reprogram transcriptome and lose brown adipogenic ability.Comparable FSTL1high brown adipocyte progenitors exist in rabbit and human iBAT.Loss of FSTL1 in brown adipocyte progenitors causes iBAT atrophy in mice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hong-Jin Chen ◽  
Ting Meng ◽  
Ping-Jin Gao ◽  
Cheng-Chao Ruan

Brown adipose tissue (BAT), consisted of brown adipocytes and stromal vascular fraction, which includes endothelial cells, lymphocytes, fibroblasts and stem cells, plays a vital role in regulating cardiovascular health and diseases. As a thermogenic organ, BAT can influence body through strengthening energy expenditure by promoting glucose and lipid metabolism. In addition, BAT is also an endocrine organ which is able to secret adipokines in an autocrine and/or paracrine fashion. BAT plays a protective role in cardiovascular system through attenuating cardiac remodeling and suppressing inflammatory response. In this review, we summarize the advances from the discovery of BAT to the present and provide an overview on the role of BAT dysfunction in cardiovascular diseases.


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


2011 ◽  
Vol 6 (S 01) ◽  
Author(s):  
M Merkel ◽  
A Bartelt ◽  
K Brügelmann ◽  
J Heeren

2014 ◽  
Vol 9 (S 01) ◽  
Author(s):  
K Krause ◽  
M Kranz ◽  
V Zeisig ◽  
N Klöting ◽  
K Steinhoff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document