scholarly journals The Role of Brown Adipose Tissue Dysfunction in the Development of Cardiovascular Disease

2021 ◽  
Vol 12 ◽  
Author(s):  
Hong-Jin Chen ◽  
Ting Meng ◽  
Ping-Jin Gao ◽  
Cheng-Chao Ruan

Brown adipose tissue (BAT), consisted of brown adipocytes and stromal vascular fraction, which includes endothelial cells, lymphocytes, fibroblasts and stem cells, plays a vital role in regulating cardiovascular health and diseases. As a thermogenic organ, BAT can influence body through strengthening energy expenditure by promoting glucose and lipid metabolism. In addition, BAT is also an endocrine organ which is able to secret adipokines in an autocrine and/or paracrine fashion. BAT plays a protective role in cardiovascular system through attenuating cardiac remodeling and suppressing inflammatory response. In this review, we summarize the advances from the discovery of BAT to the present and provide an overview on the role of BAT dysfunction in cardiovascular diseases.

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Jie Li ◽  
Ran An ◽  
Simin Liu ◽  
Haiyan Xu

Abstract Objectives Sucrose Non-Fermenting Related Kinase (SNRK), a serine/threonine kinase, is a novel member of the AMPK/SNF1 family. We previously reported that adipose specific SNRK deficiency induced systemic inflammation and insulin resistance. In this study, we aimed to dissect the role of SNRK in white versus brown adipose tissue in insulin signaling and glucose homeostasis. Methods The SNRKloxp/loxp mice were mated with adiponectin-Cre (A-Cre) transgenic mice to generate the adipose tissue specific knockout model (SNRK−/−, A-Cre), and with UCP1-Cre (U-Cre) mice to generate the brown adipose tissue (BAT) specific knockout model (SNRK−/−, U-Cre). RNA sequencing and phosphoproteomics analysis were applied to identify the signaling pathways affected by SNRK deficiency and the potential substrate of SNRK. Results SNRK deletion exclusively in BAT is sufficient to impair insulin signaling and glucose uptake without inducing local and systemic inflammation. Phosphoproteomic study identified PPP2R5D as the potential substrate of SNRK that regulates insulin signaling through controlling PP2A activity. Dephosphorylated PPP2R5D promotes constitutive assembly of PP2A-Akt complex in SNRK deficient primary brown adipocytes and BAT, therefore reduces insulin stimulated Akt phosphorylation and subsequent glucose uptake. RNA sequencing data provided further evidence to show that the PI3K/AKT signaling pathway is suppressed by SNRK deletion in primary brown adipocytes. Conclusions Insulin resistance in BAT alone is not sufficient to impact whole body glucose homeostasis, indicating that the role of SNRK in WAT and inflammation might be critical for observed systemic insulin resistance in SNRK−/−, A-Cre mice. Funding Sources National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK103699).


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Craig Porter ◽  
Elisabet Børsheim ◽  
Labros S. Sidossis

The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has led to renewed interest in the role that these adipocytes play in human energy metabolism. In our view, there is a need for robust physiological studies determining the relationship between molecular signatures of brown adipose tissue, adipose tissue mitochondrial function, and whole body energy metabolism, in order to elucidate the significance of thermogenic adipose tissue in humans. Until such information is available, the role of thermogenic adipose tissue in human metabolism and the potential that these adipocytes may prevent or treat obesity and metabolic diseases in humans will remain unknown. In this article, we summarize the recent literature pertaining to brown adipose tissue function with the aims of drawing the readers’ attention to the lack of data concerning the role of brown adipocytes in human physiology, and to the potential limitations of current research strategies.


2016 ◽  
Vol 310 (11) ◽  
pp. H1592-H1605 ◽  
Author(s):  
Robrecht Thoonen ◽  
Allyson G. Hindle ◽  
Marielle Scherrer-Crosbie

The study of brown adipose tissue (BAT) has gained significant scientific interest since the discovery of functional BAT in adult humans. The thermogenic properties of BAT are well recognized; however, data generated in the last decade in both rodents and humans reveal therapeutic potential for BAT against metabolic disorders and obesity. Here we review the current literature in light of a potential role for BAT in beneficially mediating cardiovascular health. We focus mainly on BAT's actions in obesity, vascular tone, and glucose and lipid metabolism. Furthermore, we discuss the recently discovered endocrine factors that have a potential beneficial role in cardiovascular health. These BAT-secreted factors may have a favorable effect against cardiovascular risk either through their metabolic role or by directly affecting the heart.


2019 ◽  
Vol 243 (2) ◽  
pp. R19-R27 ◽  
Author(s):  
Joan Villarroya ◽  
Rubén Cereijo ◽  
Aleix Gavaldà-Navarro ◽  
Marion Peyrou ◽  
Marta Giralt ◽  
...  

In recent years, an important secretory role of brown adipose tissue (BAT) has emerged, which is consistent, to some extent, with the earlier recognition of the important secretory role of white fat. The so-called brown adipokines or ‘batokines’ may play an autocrine role, which may either be positive or negative, in the thermogenic function of brown adipocytes. Additionally, there is a growing recognition of the signalling molecules released by brown adipocytes that target sympathetic nerve endings (such as neuregulin-4 and S100b protein), vascular cells (e.g., bone morphogenetic protein-8b), and immune cells (e.g., C-X-C motif chemokine ligand-14) to promote the tissue remodelling associated with the adaptive BAT recruitment in response to thermogenic stimuli. Moreover, existing indications of an endocrine role of BAT are being confirmed through the release of brown adipokines acting on other distant tissues and organs; a recent example is the recognition that BAT-secreted fibroblast growth factor-21 and myostatin target the heart and skeletal muscle, respectively. The application of proteomics technologies is aiding the identification of new members of the brown adipocyte secretome, such as the extracellular matrix or complement system components. In summary, BAT can no longer be considered a mere producer of heat in response to environment or dietary challenges; it is also an active secretory tissue releasing brown adipokines with a relevant local and systemic action. The identification of the major brown adipokines and their roles is highly important for the discovery of novel candidates useful in formulating intervention strategies for metabolic diseases.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 142-OR
Author(s):  
MASAJI SAKAGUCHI ◽  
SHOTA OKAGAWA ◽  
SAYAKA KITANO ◽  
TATSUYA KONDO ◽  
EIICHI ARAKI

Author(s):  
Aleix Gavaldà-Navarro ◽  
Joan Villarroya ◽  
Rubén Cereijo ◽  
Marta Giralt ◽  
Francesc Villarroya

2021 ◽  
Vol 22 (11) ◽  
pp. 5560
Author(s):  
Alejandro Álvarez-Artime ◽  
Belén García-Soler ◽  
Rosa María Sainz ◽  
Juan Carlos Mayo

In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document