Energy levels of a charged particle in a homogeneous electric field orthogonal to a piecewise homogeneous magnetic field

1993 ◽  
Vol 183 (1) ◽  
pp. 24-28 ◽  
Author(s):  
G. Ivanovski ◽  
D. Jakimovski ◽  
V. Sopova
1970 ◽  
Vol 25 (5) ◽  
pp. 608-611
Author(s):  
P. Zimmermann

Observing the change of the Hanle effect under the influence of a homogeneous electric field E the Stark effect of the (5p1/25d5/2)j=2-state in Sn I was studied. Due to the tensorial part β Jz2E2 in the Hamiltonian of the second order Stark effect the signal of the zero field crossing (M ∓ 2, M′ = 0 β ≷ 0 ) is shifted to the magnetic field H with gJμBH=2 | β | E2. From these shifts for different electric field strengths the value of the Stark parameter|β| = 0.21(2) MHz/(kV/cm)2 · gJ/1.13was deduced. A theoretical value of ß using Coulomb wave functions is discussed.


2018 ◽  
Vol 33 (04) ◽  
pp. 1850025 ◽  
Author(s):  
Bing-Qian Wang ◽  
Zheng-Wen Long ◽  
Chao-Yun Long ◽  
Shu-Rui Wu

A spinless particle coupled covariantly to a uniform magnetic field parallel to the string in the background of the rotating cosmic string is studied. The energy levels of the electrically charged particle subject to the Klein–Gordon oscillator are analyzed. Afterwards, we consider the case of the position-dependent mass and show how these energy levels depend on the parameters in the problem. Remarkably, it shows that for the special case, the Klein–Gordon oscillator coupled covariantly to a homogeneous magnetic field with the position-dependent mass in the rotating cosmic string background has the similar behaviors to the Klein–Gordon equation with a Coulomb-type configuration in a rotating cosmic string background in the presence of an external magnetic field.


2009 ◽  
Vol 17 (4) ◽  
Author(s):  
A. Dubik ◽  
M.J. Małachowski

AbstractIn this paper, the trajectory and kinetic energy of a charged particle, subjected to interaction from a laser beam containing an additionally applied external static axial magnetic field, have been analyzed. We give the rigorous analytical solutions of the dynamic equations. The obtained analytical solutions have been verified by performing calculations using the derived solutions and the well known Runge-Kutta procedure for solving original dynamic equations. Both methods gave the same results. The simulation results have been obtained and presented in graphical form using the derived solutions. Apart from the laser beam, we show the results for a maser beam. The obtained analytical solutions enabled us to perform a quantitative illustration, in a graphical form of the impact of many parameters on the shape, dimensions and the motion direction along a trajectory. The kinetic energy of electrons has also been studied and the energy oscillations in time with a period equal to the one of a particle rotation have been found. We show the appearance of, so-called, stationary trajectories (hypocycloid or epicycloid) which are the projections of the real trajectory onto the (x, y) plane. Increase in laser or maser beam intensity results in the increase in particle’s trajectory dimension which was found to be proportional to the amplitude of the electric field of the electromagnetic wave. However, external magnetic field increases the results in shrinking of the trajectories. Performed studies show that not only amplitude of the electric field but also the static axial magnetic field plays a crucial role in the acceleration process of a charged particle.At the authors of this paper best knowledge, the precise analytical solutions and theoretical analysis of the trajectories and energy gains by the charged particles accelerated in the laser beam and magnetic field are lacking in up to date publications. The authors have an intention to clarify partly some important aspects connected with this process. The presented theoretical studies apply for arbitrary charged particle and the attached figures-for electrons only.


2019 ◽  
Vol 61 (11) ◽  
pp. 1995
Author(s):  
С.О. Гладков

AbstractBased on the solution of the hydrodynamic equations and Maxwell’s equations, we show that an external quasi-homogeneous magnetic field leads to the emergence of a secondary electric field that is resulted from a nonlinear effect over magnetic potential A . This field is proved to exist in the region with a depth of $$\delta {\text{/}}2$$ , where δ is the London penetration depth. The hydrodynamic flow velocity is estimated.


Sign in / Sign up

Export Citation Format

Share Document