Effect of impurities on the phase transition temperature in a two-dimensional Ising lattice

1984 ◽  
Vol 127 (1-2) ◽  
pp. 354-362 ◽  
Author(s):  
K.I. Grozdev
2013 ◽  
Vol 45 (3) ◽  
pp. 305-311 ◽  
Author(s):  
V.A. Blagojevic ◽  
N. Obradovic ◽  
N. Cvjeticanin ◽  
D.M. Minic

Hydrothermally synthesized one-dimensional and two-dimensional nanocrystals of VO2 undergo phase transition around 65?C, where temperature and mechanism of phase transition are dependent on dimensionality of nanocrystals. Both nanocrystalline samples exhibit depression of phase transition temperature compared to the bulk material, the magnitude of which depends on the dimensionality of the nanocrystal. One-dimensional nanoribbons exhibit lower phase transition temperature and higher values of apparent activation energy than two-dimensional nanosheets. The phase transition exhibits as a complex process with somewhat lower value of enthalpy than the phase transition in the bulk, probably due to higher proportion of surface atoms in the nanocrystals. High values of apparent activation energy indicate that individual steps of the phase transition involve simultaneous movement of large groups of atoms, as expected for single-domain nanocrystalline materials.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergey V. Belim ◽  
Ilya V. Tikhomirov

AbstractIn the article, computer simulation on the behavior of a ferromagnetic thin film on a non-magnetic substrate by computer simulation is performed. The substrate is described by the two-dimensional Frenkel–Kontorova potential. The Ising model is used to describe the magnetic properties of a two-dimensional ferromagnetic film. The Wolf cluster algorithm is used to model the magnetic behavior of the film. A square lattice is considered for an unperturbed ferromagnetic film. Computer simulations show that mismatch of film and substrate periods results in film splitting into regions with different atomic structures. Magnetic properties for the obtained structure have been investigated. The hysteresis loop is calculated using the Metropolis algorithm. Deformations of the substrate lead to a decrease in the phase transition temperature. The Curie temperature decreases both when the substrate is compressed and when stretched. The change in phase transition temperature depends on the decreasing rate of exchange interaction with distance and the amplitude of interaction with the substrate. When the substrate is compressed, an increase in the amplitude of the interaction between the film and the substrate results in an increase in the phase transition temperature. The opposite effect occurs when the substrate is stretched. The hysteresis loop changes its shape and parameters when the substrate is deformed. Compression and stretching of the substrate results in a decrease in coercive force. The reduction in coercive force when compressing the substrate is greater than when stretching. The magnetization of the film is reduced by deformations at a fixed temperature.


Author(s):  
Uwe Lücken ◽  
Joachim Jäger

TEM imaging of frozen-hydrated lipid vesicles has been done by several groups Thermotrophic and lyotrophic polymorphism has been reported. By using image processing, computer simulation and tilt experiments, we tried to learn about the influence of freezing-stress and defocus artifacts on the lipid polymorphism and fine structure of the bilayer profile. We show integrated membrane proteins do modulate the bilayer structure and the morphology of the vesicles.Phase transitions of DMPC vesicles were visualized after freezing under equilibrium conditions at different temperatures in a controlled-environment vitrification system. Below the main phase transition temperature of 24°C (Fig. 1), vesicles show a facetted appearance due to the quasicrystalline areas. A gradual increase in temperature leads to melting processes with different morphology in the bilayer profile. Far above the phase transition temperature the bilayer profile is still present. In the band-pass-filtered images (Fig. 2) no significant change in the width of the bilayer profile is visible.


RSC Advances ◽  
2021 ◽  
Vol 11 (41) ◽  
pp. 25664-25676
Author(s):  
Abir Hadded ◽  
Jalel Massoudi ◽  
Sirine Gharbi ◽  
Essebti Dhahri ◽  
A. Tozri ◽  
...  

The present work reports a detailed study of the spin dynamics, magnetocaloric effect and critical behaviour near the magnetic phase transition temperature, of a ferrimagnetic spinel Cu1.5Mn1.5O4.


Sign in / Sign up

Export Citation Format

Share Document