scholarly journals Composition of the Frenkel–Kontorova and Ising models for investigation the magnetic properties of a ferromagnetic monolayer on a stretching substrate

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergey V. Belim ◽  
Ilya V. Tikhomirov

AbstractIn the article, computer simulation on the behavior of a ferromagnetic thin film on a non-magnetic substrate by computer simulation is performed. The substrate is described by the two-dimensional Frenkel–Kontorova potential. The Ising model is used to describe the magnetic properties of a two-dimensional ferromagnetic film. The Wolf cluster algorithm is used to model the magnetic behavior of the film. A square lattice is considered for an unperturbed ferromagnetic film. Computer simulations show that mismatch of film and substrate periods results in film splitting into regions with different atomic structures. Magnetic properties for the obtained structure have been investigated. The hysteresis loop is calculated using the Metropolis algorithm. Deformations of the substrate lead to a decrease in the phase transition temperature. The Curie temperature decreases both when the substrate is compressed and when stretched. The change in phase transition temperature depends on the decreasing rate of exchange interaction with distance and the amplitude of interaction with the substrate. When the substrate is compressed, an increase in the amplitude of the interaction between the film and the substrate results in an increase in the phase transition temperature. The opposite effect occurs when the substrate is stretched. The hysteresis loop changes its shape and parameters when the substrate is deformed. Compression and stretching of the substrate results in a decrease in coercive force. The reduction in coercive force when compressing the substrate is greater than when stretching. The magnetization of the film is reduced by deformations at a fixed temperature.

2013 ◽  
Vol 45 (3) ◽  
pp. 305-311 ◽  
Author(s):  
V.A. Blagojevic ◽  
N. Obradovic ◽  
N. Cvjeticanin ◽  
D.M. Minic

Hydrothermally synthesized one-dimensional and two-dimensional nanocrystals of VO2 undergo phase transition around 65?C, where temperature and mechanism of phase transition are dependent on dimensionality of nanocrystals. Both nanocrystalline samples exhibit depression of phase transition temperature compared to the bulk material, the magnitude of which depends on the dimensionality of the nanocrystal. One-dimensional nanoribbons exhibit lower phase transition temperature and higher values of apparent activation energy than two-dimensional nanosheets. The phase transition exhibits as a complex process with somewhat lower value of enthalpy than the phase transition in the bulk, probably due to higher proportion of surface atoms in the nanocrystals. High values of apparent activation energy indicate that individual steps of the phase transition involve simultaneous movement of large groups of atoms, as expected for single-domain nanocrystalline materials.


2003 ◽  
Vol 17 (22n24) ◽  
pp. 4327-4331
Author(s):  
Qing-Bao Ren ◽  
Meng-Bo Luo ◽  
Qing-Hu Chen

The transport properties of the f=1/2 square lattice Coulomb gas model at the Ising-like phase transition temperature are studied using Monte Carlo technique. A non-Ohmic transport property is found at the Ising-like phase transition temperature Tc, indicating that the Ising-like phase transition is influenced by the KT phase transition and some vortices are bound neutrally at Tc.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012089
Author(s):  
S V Belim ◽  
I V Bychkov ◽  
I V Maltsev

Abstract In this paper, we investigate the behavior of a ferromagnetic (FM) film on a nonmagnetic substrate near the Curie point by the computer simulation. The influence of the substrate is specified using the two-dimensional Frenkel-Kontorova (FK) potential. The study is carried out for a two-dimensional film described by the Ising model. At the first step, we calculate the positions of the substrate’s atoms in the ground state depending on the parameters. The parameters are (i) the ratio of the substrate periods and the crystal lattice of the film; and (ii) the ratio of the substrate potential amplitude to the elasticity coefficient of interatomic interaction. The period ratio determines the system coverage ratio. Minimization of the system’s total energy determines the ground state. Calculations show that the ground state has a periodic structure that differs from a square lattice with a coverage coefficient not equal to unity. We calculate the displacements of atoms from the equilibrium position for systems with a different linear scale.


Author(s):  
Uwe Lücken ◽  
Joachim Jäger

TEM imaging of frozen-hydrated lipid vesicles has been done by several groups Thermotrophic and lyotrophic polymorphism has been reported. By using image processing, computer simulation and tilt experiments, we tried to learn about the influence of freezing-stress and defocus artifacts on the lipid polymorphism and fine structure of the bilayer profile. We show integrated membrane proteins do modulate the bilayer structure and the morphology of the vesicles.Phase transitions of DMPC vesicles were visualized after freezing under equilibrium conditions at different temperatures in a controlled-environment vitrification system. Below the main phase transition temperature of 24°C (Fig. 1), vesicles show a facetted appearance due to the quasicrystalline areas. A gradual increase in temperature leads to melting processes with different morphology in the bilayer profile. Far above the phase transition temperature the bilayer profile is still present. In the band-pass-filtered images (Fig. 2) no significant change in the width of the bilayer profile is visible.


Sign in / Sign up

Export Citation Format

Share Document