scholarly journals Influence of dimensionality on phase transition in VO2 nanocrystals

2013 ◽  
Vol 45 (3) ◽  
pp. 305-311 ◽  
Author(s):  
V.A. Blagojevic ◽  
N. Obradovic ◽  
N. Cvjeticanin ◽  
D.M. Minic

Hydrothermally synthesized one-dimensional and two-dimensional nanocrystals of VO2 undergo phase transition around 65?C, where temperature and mechanism of phase transition are dependent on dimensionality of nanocrystals. Both nanocrystalline samples exhibit depression of phase transition temperature compared to the bulk material, the magnitude of which depends on the dimensionality of the nanocrystal. One-dimensional nanoribbons exhibit lower phase transition temperature and higher values of apparent activation energy than two-dimensional nanosheets. The phase transition exhibits as a complex process with somewhat lower value of enthalpy than the phase transition in the bulk, probably due to higher proportion of surface atoms in the nanocrystals. High values of apparent activation energy indicate that individual steps of the phase transition involve simultaneous movement of large groups of atoms, as expected for single-domain nanocrystalline materials.

2014 ◽  
Vol 787 ◽  
pp. 401-406
Author(s):  
Jun Li Zhang ◽  
Peng Wang ◽  
Dong An ◽  
Xue Ting Li ◽  
Qian Wu ◽  
...  

In recent decades, thermo sensitive polymer system has been intensively studied due to significant importance in fundamental studies and various applications. Methyl cellulose (MC) is a thermo sensitive natural polymer, having a phase transition temperature or a lower critical solution temperature of about 65 °C. When methacrylic acid (MAA) was added to the MC solution, the phase transition of MC occurred at a lower temperature less than 65°C, and a higher concentration of MAA leds to a lower phase transition temperature of MC. Based on the phase transition of MC solution triggered by MAA, the surfactant-free poly (methacrylic acid) nanogels were synthesized by using methyl cellulose as a template in an aqueous media. The resulting PMAA nanogels characterized by using dynamic light scattering (DLS) and Fourier Transform Infrared Spectroscopy (FTIR). The nanogels of poly methyacrylic acid (PMAA) were affected by the concentration of both MC and MAA. A higher concentration of MAA led to a higher polymerization rate, and the higher concentration of MC resulted in the formation of the samller size of PMAA nanogels.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sergey V. Belim ◽  
Ilya V. Tikhomirov

AbstractIn the article, computer simulation on the behavior of a ferromagnetic thin film on a non-magnetic substrate by computer simulation is performed. The substrate is described by the two-dimensional Frenkel–Kontorova potential. The Ising model is used to describe the magnetic properties of a two-dimensional ferromagnetic film. The Wolf cluster algorithm is used to model the magnetic behavior of the film. A square lattice is considered for an unperturbed ferromagnetic film. Computer simulations show that mismatch of film and substrate periods results in film splitting into regions with different atomic structures. Magnetic properties for the obtained structure have been investigated. The hysteresis loop is calculated using the Metropolis algorithm. Deformations of the substrate lead to a decrease in the phase transition temperature. The Curie temperature decreases both when the substrate is compressed and when stretched. The change in phase transition temperature depends on the decreasing rate of exchange interaction with distance and the amplitude of interaction with the substrate. When the substrate is compressed, an increase in the amplitude of the interaction between the film and the substrate results in an increase in the phase transition temperature. The opposite effect occurs when the substrate is stretched. The hysteresis loop changes its shape and parameters when the substrate is deformed. Compression and stretching of the substrate results in a decrease in coercive force. The reduction in coercive force when compressing the substrate is greater than when stretching. The magnetization of the film is reduced by deformations at a fixed temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Fuliang Zhu ◽  
Yanshuang Meng

The influence of Eu3+-doped on phase transition kinetics of pseudoboehmite has not been reported in the literature. Through dropping Eu(NO3)3into pseudoboehmite colloidal solution, pseudoboehmite xerogel was produced using spray pyrolysis. The influence of Eu3+-doped on the mechanism of pseudoboehmite phase transition kinetics has been calculated and analyzed by TG/DSC, XRD, and Kissinger equation. Part of Eu3+ion formed compound EuAl12O19, which existed betweenα-Al2O3grains. Bulk diffusion of Al3+was prevented from compound EuAl12O19. Therefore, phase transition kinetics rate ofθ-Al2O3 → α-Al2O3was slowed down, causing an increase of phase transition activation energy and elevation of phase transition temperature.


Sign in / Sign up

Export Citation Format

Share Document