The application of gas phase and solid state X-ray photoelectron spectroscopy to the investigation of derivatives containing the repeating SN unit

1980 ◽  
Vol 1 (2) ◽  
pp. 161-173 ◽  
Author(s):  
Patrick Brant ◽  
David C. Weber ◽  
Curtis T. Ewing ◽  
Forrest L. Carter ◽  
Joseph A. Hashmall
1994 ◽  
Vol 346 ◽  
Author(s):  
R.J.P. Corriu ◽  
D. Leclercq ◽  
P.H. Mutin ◽  
A. Vioux

ABSTRACTTwo silicon oxycarbide glasses with different compositions (O/Si ratio 1.2 and 1.8) were prepared by pyrolysis at moderate temperature (900 °C) of polysiloxane precursors. Their structure was investigated using quantitative 29Si solid-state NMR and X-ray photoelectron spectroscopy (XPS). The environment of the silicon atoms in the oxycarbide phase corresponded to a purely random distribution of Si-O and Si-C bonds depending on the O/Si ratio of the glass only and not on the structure of the precursors. At the light of the NMR results, the Si2p XPS spectra of the glasses may be interpreted using the contribution of the five possible SiOxC4-x tetrahedra. The Cls spectra of these glasses indicated the presence of oxycarbide carbon in CSi4 tetrahedra, similar to carbide carbon, and graphitic-like excess carbon.


2005 ◽  
Vol 277-279 ◽  
pp. 708-719
Author(s):  
Chang Seop Lee ◽  
Hee Jung Lee ◽  
Sung Woo Choi ◽  
Jahun Kwak ◽  
Charles H.F. Peden

A series of cation exchanged Y-zeolites were prepared by exchanging cations with various alkali (M+, M= Li, Na, K, Cs) metals. The structural and catalytic properties of the alkali metal exchanged Y-zeolites have been investigated by a number of analytical techniques. Comparative elemental analyses were determined by an Energy Dispersive Spectroscopy X-ray (EDS), X-ray Photoelectron Spectroscopy (XPS), Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) and X-ray Fluorescence (XRF) before and after cation substitution. The framework and non-framework Al coordination and the Si/Al ratios of the Y-zeolites were investigated by MAS Solid-State Nuclear Magnetic Resonance (NMR) spectroscopy. The Al NMR spectra were characterized by two 27Al resonance signals at 12 and 59 ppm, indicating the presence of the non-framework and framework Al respectively. The intensities of these resonances were used to monitor the amount of the framework and non-framework Al species in the series of exchanged zeolites. The 29Si NMR spectra were characterized by four resonance signals at -79, -84, -90, and -95 ppm. Changing the alkali metal cations in the exchanged Y-zeolites significantly altered the extent of the octahedral/tetrahedral coordination and the Si/Al ratio. The Fourier Transform Infrared spectra of the CO2 adsorbed on to the exchanged Y-zeolites showed a low frequency shift, as the atomic number of the exchanged alkali metal increased. In addition, the catalytic activity of these samples for NOx reduction were tested in combination with a non-thermal plasma technique and interpreted based on the above structural and spectroscopic information.


1990 ◽  
Vol 93 (9) ◽  
pp. 6357-6362 ◽  
Author(s):  
M. P. Keane ◽  
S. Svensson ◽  
A. Naves de Brito ◽  
N. Correia ◽  
S. Lunell ◽  
...  

1992 ◽  
Vol 70 (11) ◽  
pp. 2809-2817 ◽  
Author(s):  
Wolfgang Kliegel ◽  
Gottfried Lubkowitz ◽  
Steven J. Rettig ◽  
James Trotter

The preparation of the N-(2-hydroxypropyl)-N-alkylhydroxylamines, 6a (R = CH3) and 6b (R = CH2Ph), and their reactions with phenylboronic acid are described. Regardless of the molar ratios of reactants employed, the reaction with 6b leads to the 1:2 condensate 1-benzyl-7-methyl-3,5-diphenyl-2,4,6-trioxa-1-azonia-3-bora-5-boratabicyclo[3.3.0]octane, 7, while that with 6a gives rise to the 1:1 condensate 1,4,6,9-tetramethyl-2,7-diphenyl-3,8,11,12-tetraoxa-1,6-diazonia-2,7-diboratatricyclo[5.3.1. 12,6]dodecane, 11 (the cyclic BONBON dimer of 4,6-dimethyl-2-phenyl-1,3-dioxa-4-aza-2-boracyclohexane, 9). Compounds 7 and 11 both crystallize in the triclinic space group [Formula: see text]: for 7; a = 13.126(1), b = 15.337(1), c = 10.9469(5) Å, α = 91.727(5), β = 104.647(5), γ = 72.922(7)°, Z = 4; and for 11; a = 9.0807(4), b = 9.1653(3), c = 6.4876(2) Å, α = 97.708(3), β = 108.830(3), γ = 89.188(4)°, Z = 1. The structures were solved by direct methods and were refined by full-matrix least-squares procedures to R = 0.038 and 0.032 for 5879 and 1827 reflections with I ≥ 3σ(F2), respectively. Compound 7 has the expected bicyclic pyroboronate structure, but represents the first reported N-substituted example of this type of compound. Bond lengths involving boron in 7 are (C) O—B(sp3) = 1.428(2) and 1.420(2), (B)O—B(sp3) = 1.472(2) and 1.468(2), N—B(sp3) = 1.737(2) and 1.762(2), C(phenyl)—B(sp3) = 1.588(2) and 1.584(2), (N)O—B(sp2) = 1.402(2) and 1.404(2), (B)O—B(sp2) = 1.331(2) and 1.329(2), C(phenyl)—B(sp2) = 1.555(3) and 1.553(2) Å. The X-ray analysis establishes a centrosymmetric, twofold N → B coordinated, dimeric structure in the solid state for 11 in which each B—O—N segment of a central six-membered BONBON ring is bridged by an O—C—C moiety. Compound 11 represents the first fully characterized example of a new type of "BONBON" compound. Bond distances involving the boron atom are (N)O—B = 1.465(1), (C)O—B = 1.428(1), N—B = 1.695(2), and C(phenyl)—B = 1.607(2) Å. Spectroscopic evidence indicates that in solution and in the gas phase this material exists predominantly as the monomer 9.


Sign in / Sign up

Export Citation Format

Share Document