Mixing effect and combustion efficiency in compartment fires

1983 ◽  
Vol 5 (3-4) ◽  
pp. 199-204 ◽  
Author(s):  
Hisahiro Takeda
2019 ◽  
Vol 23 (2 Part B) ◽  
pp. 929-939
Author(s):  
Man Yuan ◽  
Jiaqing Zhang ◽  
Shouxiang Lu

2015 ◽  
Vol 57 (10) ◽  
pp. 843-849 ◽  
Author(s):  
Christian Kusche ◽  
Christian Knaust ◽  
Sarah-Katharina Hahn ◽  
Ulrich Krause

1990 ◽  
Vol 22 (1-2) ◽  
pp. 101-111 ◽  
Author(s):  
J. Wanner ◽  
M. Sýkora ◽  
M. Kos ◽  
J. Miklenda ◽  
P. Grau

The situation in the treatment of wastewaters from small sources in Czechoslovakia has been discussed and two types of manufactured rotating biological contactors have been described. The evaluation of RBCs' operation showed the main disadvantages of the contactors with conventional discs, viz. the low 0C and low mixing effect. In a newly designed RBC, the discs or packets of discs were replaced by a cage packed with a random medium. The cage was equipped with tubular aeration and mixing elements. The long-term tests with a pilot-plant and a full-scale unit using synthetic as well as municipal wastewaters proved the ability of the packed-cage RBC to achieve a low effluent BOD with such organic loadings when the effluent from the conventional RBCs already deteriorated. Besides the BOD removal the 0C of the packed-cage RBCs was tested to verify the possibility of the combined cultivation of suspended and fixed-film biomass. On the basis of results presented here, a new package wastewater treatment plant for about 500 PE will be designed.


2020 ◽  
Vol 04 ◽  
Author(s):  
Guohai Jia ◽  
Lijun Li ◽  
Li Dai ◽  
Zicheng Gao ◽  
Jiping Li

Background: A biomass pellet rotary burner was chosen as the research object in order to study the influence of excess air coefficient on the combustion efficiency. The finite element simulation model of biomass rotary burner was established. Methods: The computational fluid dynamics software was applied to simulate the combustion characteristics of biomass rotary burner in steady condition and the effects of excess air ratio on pressure field, velocity field and temperature field was analyzed. Results: The results show that the flow velocity inside the burner gradually increases with the increase of inlet velocity and the maximum combustion temperature is also appeared in the middle part of the combustion chamber. Conclusion: When the excess air coefficient is 1.0 with the secondary air outlet velocity of 4.16 m/s, the maximum temperature of the rotary combustion chamber is 2730K with the secondary air outlet velocity of 6.66 m/s. When the excess air ratio is 1.6, the maximum temperature of the rotary combustion chamber is 2410K. When the air ratio is 2.4, the maximum temperature of the rotary combustion chamber is 2340K with the secondary air outlet velocity of 9.99 m/s. The best excess air coefficient is 1.0. The experimental value of combustion temperature of biomass rotary burner is in good agreement with the simulation results.


2002 ◽  
Vol 11 (2) ◽  
pp. 121-141
Author(s):  
A. K. GUPTA ◽  
RAJIV KUMAR ◽  
SURENDRA KUMAR

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1036 ◽  
Author(s):  
Xinying Xu ◽  
Qi Chen ◽  
Mifeng Ren ◽  
Lan Cheng ◽  
Jun Xie

Increasing the combustion efficiency of power plant boilers and reducing pollutant emissions are important for energy conservation and environmental protection. The power plant boiler combustion process is a complex multi-input/multi-output system, with a high degree of nonlinearity and strong coupling characteristics. It is necessary to optimize the boiler combustion model by means of artificial intelligence methods. However, the traditional intelligent algorithms cannot deal effectively with the massive and high dimensional power station data. In this paper, a distributed combustion optimization method for boilers is proposed. The MapReduce programming framework is used to parallelize the proposed algorithm model and improve its ability to deal with big data. An improved distributed extreme learning machine is used to establish the combustion system model aiming at boiler combustion efficiency and NOx emission. The distributed particle swarm optimization algorithm based on MapReduce is used to optimize the input parameters of boiler combustion model, and weighted coefficient method is used to solve the multi-objective optimization problem (boiler combustion efficiency and NOx emissions). According to the experimental analysis, the results show that the method can optimize the boiler combustion efficiency and NOx emissions by combining different weight coefficients as needed.


Sign in / Sign up

Export Citation Format

Share Document