Some effects of aerosol drying and oxygen feeding on the analytical performance of an inductively coupled nitrogen-argon plasma

1986 ◽  
Vol 41 (1-2) ◽  
pp. 27-38 ◽  
Author(s):  
B. Magyar ◽  
P. Lienemann ◽  
H. Vonmont
1993 ◽  
Vol 58 (8) ◽  
pp. 1821-1831 ◽  
Author(s):  
Jaroslav Jambor ◽  
Tomáš Javorek

The macrophorous hydrophobic sorbent Amberlite XAD-2 proved to be well suited to the preconcentration of minority amounts of Al, Au, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, Ti and V in the form of their chelates with organic reagents. From among 14 reagents tested, 8-hydroxyquinoline and diethyldithiocarbamate appeared most suitable for the quantitative sorption up to level of 1 μg l-1 of analyte. Emission spectrometry served as the analytical finish; the nitrous oxide-acetylene flame, electric arc and inductively coupled argon plasma were chosen according to the nature of the element. The procedure is convenient for the determination of the minority analytes in waters


2018 ◽  
Vol 97 (12) ◽  
pp. 1189-1194 ◽  
Author(s):  
A. M. Malov ◽  
L. V. Lukovnikova ◽  
Liliya A. Alikbayeva ◽  
I. S. Iakubova ◽  
D. K. Shchegolikhin

Introduction. Macromycetes include mercury compounds in their metabolism processes. The method for assessing the contamination of the soil layer (topsoil) by mercury by estimating the mercury content in the mushrooms is accessible and sufficiently informative. Mercury is a persistent inorganic ecotoxicant, it enters the human body from the environment. This process requires constant monitoring of the content of this hazardous metal in the environment and the in biomaterials of the human organism. Material and methods. The object of the study was selected bracket macromycetes growing on open soil areas: lawns, boulevards, parks, squares, etc. There were studied representatives from the fungal families as follows: Agaricacea, Boletaceae, Russu-laceae, Coprinaceae. Mushrooms were collected in the stage of sporulation, in the spring-summer-autumn period from 2002 to 2017. The determination of mercury in fungi was performed by atomic absorption method on specialized mercury analyzers of the “Julia” series (detection limit of 1 ng/g, the error of the method is not more than 15%). Mercury content in hair was determined in 1153 St. Petersburg residents aged from 0 to 80 years using atomic emission and mass spectrometry methods with inductively coupled argon plasma on devices Elan 9000 (Perkin Elmer, USA) and Optima 2000 V (Perkin Elmer, USA). Results. The results of the analysis of mushrooms collected in 2017 on one of the green streets of the industrial district of Saint-Petersburg demonstrate a high degree of mercury contamination of the megapolis. Mushrooms (Cinereus comatus) were collected at three locations of Alameda, separated by approximately 100 m, and were analyzed for the content of mercury in them. The following values of mercury in mushrooms were got is a 0.61 mg/kg, 0.83 mg/kg and 0.35 mg/kg. The hair of 1153 inhabitants of St.-Petersburg has been analyzed for mercury content. The highest concentrations of mercury have been established to be set at working population aged 18-64 years. This fact can be explained by the professional activities associated with the contact with mercury and active way of life, particularly with greater frequency of the use in the diet of mushrooms and other products, being potential sources of mercury. Discussion. The performed studies show the mercury concentration to be not only generalized but also stable. The pollution of the territory of St. Petersburg is little different from the pollution of the territories of other cities, where the mercury content in mushrooms is also found to be high in comparison with the permissible level. Conclusion. The obtained data indicate a high stable contamination of the territory of St. Petersburg and its nearest suburbs with mercury. Mercury and its compounds in environmental objects (mushrooms) can present the real danger to the health of the population, therefore there is a need for non-invasive monitoring of the content of mercury in biomaterials of the human organism and environmental objects.


Sign in / Sign up

Export Citation Format

Share Document