Role of reactive oxygen and free radicals in skin reactions induced by UV radiation (UVR)

1990 ◽  
Vol 9 ◽  
pp. 156
Author(s):  
M.A. Pathak
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Gabriel Sigmund ◽  
Cristina Santín ◽  
Marc Pignitter ◽  
Nathalie Tepe ◽  
Stefan H. Doerr ◽  
...  

AbstractGlobally landscape fires produce about 256 Tg of pyrogenic carbon or charcoal each year. The role of charcoal as a source of environmentally persistent free radicals, which are precursors of potentially harmful reactive oxygen species, is poorly constrained. Here, we analyse 60 charcoal samples collected from 10 wildfires, that include crown as well as surface fires in forest, shrubland and grassland spanning different boreal, temperate, subtropical and tropical climate. Using electron spin resonance spectroscopy, we measure high concentrations of environmentally persistent free radicals in charcoal samples, much higher than those found in soils. Concentrations increased with degree of carbonization and woody fuels favoured higher concentrations. Moreover, environmentally persistent free radicals remained stable for an unexpectedly long time of at least 5 years. We suggest that wildfire charcoal is an important global source of environmentally persistent free radicals, and therefore potentially of harmful reactive oxygen species.


2015 ◽  
Vol 51 (89) ◽  
pp. 16139-16142 ◽  
Author(s):  
Yuyuan Yao ◽  
Bin Jiang ◽  
Yajun Mao ◽  
Juan Chen ◽  
Zhenfu Huang ◽  
...  

A positive role of PFRs in enhancing reactive oxygen species (ROS) generation for an extreme rate enhancement in environmental pollutant decomposition is reported.


2004 ◽  
Vol 12 (4) ◽  
pp. 203-205 ◽  
Author(s):  
Milenko Stanojevic ◽  
Zorica Stanojevic ◽  
Dragan Jovanovic ◽  
Milena Stojiljkovic

Light radiation is a part of the electromagnetic radiation, and it consists of the ultraviolet (UV) radiation, visible light, and infrared radiation. UV radiation energy is absorbed in the form of photons in biomolecules (chromophores) and induces various cellular reactions, out of which photochemical and photosensitizing are the most significant. In contact with the skin UV radiation incites protection mechanisms: the most important are stratum corneum thickening and melanin synthesis (melanogenesis). Basic role of melanin is absorption and scattering of UV rays and neutralization of free radicals. In this review physical characteristics of UV radiation, its biological effects, and relation to melanogenesis and carcinogenesis are discussed.


Author(s):  
Durg V. Rai ◽  
Harcharan Singh Ranu

Ovarian hormone deficiency increases the generation of reactive oxygen species. Oxidative stress due to reactive oxygen species (ROS) can cause oxidative damage to cells. Cells have a number of defense mechanisms to protect themselves from the toxicity of ROS. There is increasing evidence of the role of free radicals in bone resorption and bone loss. Ovariectomised female wistar rats had been used as the animal model for the study of osteoporosis. Even though, there are studies portraying the role of free radicals in bone loss, the defense mechanism adapted by bone in ovariectomised animals remains obscure. So, the impact of ovariectomy on the bone antioxidant system in rats was investigated. Twenty female wistar rats were taken and divided into two groups: ovariectomised and control. It had been found that a significant (p<0.001) decrease in the activity of various enzymes like CAT (catalase), SOD (superoxide dismutase) (p<0.001), GST (glutathione-s-transferase). However, an increase in the malondialdehyde levels was found to be 30% in the ovariectomised rats as compared to the controls. Thus the study elucidates the oxidative stress in bone under ovariectomy.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4666
Author(s):  
Ahmet Ozer Sehirli ◽  
Serkan Sayıner ◽  
Ugochukwu Chukwunyere ◽  
Nedime Serakinci

The cellular utilization of oxygen leads to the generation of free radicals in organisms. The accumulation of these free radicals contributes significantly to aging and several age-related diseases. Angiotensin II can contribute to DNA damage through oxidative stress by activating the NAD(P)H oxidase pathway, which in turn results in the production of reactive oxygen species. This radical oxygen-containing molecule has been linked to aging and several age-related disorders, including renal damage. Considering the role of angiotensin in aging, melatonin might relieve angiotensin-II-induced stress by enhancing the mitochondrial calcium uptake 1 pathway, which is crucial in preventing the mitochondrial calcium overload that may trigger increased production of reactive oxygen species and oxidative stress. This review highlights the role and importance of melatonin together with angiotensin in aging and age-related diseases.


2021 ◽  
Vol 28 ◽  
Author(s):  
Francisca Rivas ◽  
Carlos Poblete-Aro ◽  
María Elsa Pando ◽  
María José Allel ◽  
Valentina Fernandez ◽  
...  

: Aging is defined as the functional loss of tissues and organs over time. This is a biological, irreversible, progressive, and universal process that results from genetic and environmental factors, such as diet, physical activity, smoking, harmful alcohol consumption, and exposure to toxins, among others. Aging is a consequence of molecular and cellular damage built up over time. This damage begins with a gradual decrease in physical and mental capacity, thus increasing the risk of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Neuronal, functional, and structural damage can be explained by an imbalance among free radicals, reactive oxygen species, reactive nitrogen species, and antioxidants, which finally lead to oxidative stress. Due to the key role of free radicals, reactive oxygen species, and reactive nitrogen species, antioxidant therapy may reduce the oxidative damage associated with neurodegeneration. Exogenous antioxidants are molecules that may help maintain the balance between the formation and elimination of free radicals, thus protecting the cell from their toxicity. Among them, polyphenols are a broad group of secondary plant metabolites with potent antioxidant properties. Here, we review several studies that show the potential role of polyphenol consumption to prevent, or slow down, harmful oxidative processes linked to neurodegenerative disorders.


2020 ◽  
Vol 725 ◽  
pp. 138413 ◽  
Author(s):  
Jun Xu ◽  
Yunchao Dai ◽  
Yafang Shi ◽  
Song Zhao ◽  
Haixia Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document