scholarly journals Ultraviolet radiation and melanogenesis

2004 ◽  
Vol 12 (4) ◽  
pp. 203-205 ◽  
Author(s):  
Milenko Stanojevic ◽  
Zorica Stanojevic ◽  
Dragan Jovanovic ◽  
Milena Stojiljkovic

Light radiation is a part of the electromagnetic radiation, and it consists of the ultraviolet (UV) radiation, visible light, and infrared radiation. UV radiation energy is absorbed in the form of photons in biomolecules (chromophores) and induces various cellular reactions, out of which photochemical and photosensitizing are the most significant. In contact with the skin UV radiation incites protection mechanisms: the most important are stratum corneum thickening and melanin synthesis (melanogenesis). Basic role of melanin is absorption and scattering of UV rays and neutralization of free radicals. In this review physical characteristics of UV radiation, its biological effects, and relation to melanogenesis and carcinogenesis are discussed.

2021 ◽  
Vol 22 (7) ◽  
pp. 3755
Author(s):  
Jakub Rok ◽  
Zuzanna Rzepka ◽  
Justyna Kowalska ◽  
Klaudia Banach ◽  
Artur Beberok ◽  
...  

Minocycline is a drug which induces skin hyperpigmentation. Its frequency reaches up to 50% of treated patients. The adverse effect diminishes the great therapeutic potential of minocycline, including antibacterial, neuroprotective, anti-inflammatory and anti-cancer actions. It is supposed that an elevated melanin level and drug accumulation in melanin-containing cells are related to skin hyperpigmentation. This study aimed to evaluate molecular and biochemical mechanism of minocycline-induced hyperpigmentation in human normal melanocytes, as well as the contribution of UV radiation to this side effect. The experiments involved the evaluation of cyto- and phototoxic potential of the drug using cell imaging with light and confocal microscopes as well as biochemical and molecular analysis of melanogenesis. We showed that minocycline induced melanin synthesis in epidermal melanocytes. The action was intensified by UV irradiation, especially with the UVB spectrum. Minocycline stimulated the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase (TYR) gene. Higher levels of melanin and increased activity of tyrosinase were also observed in treated cells. Moreover, minocycline triggered the supranuclear accumulation of tyrosinase, similar to UV radiation. The decreased level of premelanosome protein PMEL17 observed in all minocycline-treated cultures suggests disorder of the formation, maturation or distribution of melanosomes. The study revealed that minocycline itself was able to enhance melanin synthesis. The action was intensified by irradiation, especially with the UVB spectrum. Demonstrated results confirmed the potential role of melanin and UV radiation minocycline-induced skin hyperpigmentation.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Fabrizio Ayala ◽  
Marco Palla ◽  
Rossella Di Trolio ◽  
Nicola Mozzillo ◽  
Paolo A. Ascierto

Purpose. Electromagnetic radiation with wavelength in the range 100 nm to 1 mm is known as optical radiation and includes ultraviolet radiation, the visible spectrum, and infrared radiation. The deleterious short- and long-term biological effects of ultraviolet radiation, including melanoma and other skin cancers, are well recognized. Infrared radiation may also have damaging biological effects. Methods. The objective of this review was to assess the literature over the last 15 years and to summarize correlations between exposure to optical radiation and the risk of melanoma and other cancers. Results. There is a clear correlation between exposure to UV radiation and the development of skin cancer. Most importantly, a strong association between artificial UV radiation exposure, for example, tanning devices, and the risk of melanoma and squamous cell carcinoma has been clearly demonstrated. There is no clear evidence that exposure to IR and laser radiation may increase the risk of skin cancer, although negative health effects have been observed. Conclusions. Preventative strategies that involve provision of public information highlighting the risks associated with exposure to sunlight remain important. In addition, precautionary measures that discourage exposure to tanning appliances are required, as is legislation to prevent their use during childhood.


2016 ◽  
Vol 75 (1) ◽  
pp. 69-74 ◽  
Author(s):  
M. Olak-Kucharczyk ◽  
M. Foszpańczyk ◽  
M. Gmurek ◽  
S. Ledakowicz

The objective of this work was to study the photosensitised oxidation of the xenobiotics benzylparaben (BeP) and 2,4dichlorophenol (2,4DCP) in aqueous solutions using photosensitisers immobilised into chitosan carrier particles and visible light radiation. Zn(II) phthalocyanine tetrasulfonate tetrasodium salt and Al(III) phthalocyanine chloride tetrasulfonic acid were used as photosensitisers. The major role of the singlet oxygen during photodegradation was proven by using scavengers of reactive oxygen species. The influence of initial xenobiotic concentration and temperature on degradation rate was examined. The investigations were focused on kinetics (Langmuir–Hinshelwood model) as well as activation energy determination. Moreover, the adsorption isotherms of BeP and 2,4DCP into chitosan carrier were determined using the Brunauer–Emmett–Teller model.


2020 ◽  
Vol 23 (01) ◽  
pp. 01-08
Author(s):  
Ban Jaber Edan ◽  
Huda Mahmood Shakir ◽  
Naseer Jwaad Almukhtar
Keyword(s):  

Author(s):  
Rana A. Alaaeddine ◽  
Perihan A. Elzahhar ◽  
Ibrahim AlZaim ◽  
Wassim Abou-Kheir ◽  
Ahmed S.F. Belal ◽  
...  

: Emerging evidence supports an intertwining framework for the involvement of different inflammatory pathways in a common pathological background for a number of disorders. Of importance are pathways involving arachidonic acid metabolism by cyclooxygenase-2 (COX-2) and 15-lipoxygenase (15-LOX). Both enzyme activities and their products are implicated in a range of pathophysiological processes encompassing metabolic impairment leading to adipose inflammation and the subsequent vascular and neurological disorders, in addition to various pro-and anti-tumorigenic effects. A further layer of complexity is encountered by the disparate, and often reciprocal, modulatory effect COX-2 and 15-LOX activities and metabolites exert on each other or on other cellular targets, the most prominent of which is peroxisome proliferator-activated receptor gamma (PPARγ). Thus, effective therapeutic intervention with such multifaceted disorders requires the simultaneous modulation of more than one target. Here, we describe the role of COX-2, 15-LOX, and PPARγ in cancer and complications of metabolic disorders, highlight the value of designing multi-target directed ligands (MTDLs) modifying their activity, and summarize the available literature regarding the rationale and feasibility of design and synthesis of these ligands together with their known biological effects. We speculate on the potential impact of MTDLs in these disorders as well as emphasize the need for structured future effort to translate these early results facilitating the adoption of these, and similar, molecules in clinical research.


2018 ◽  
Vol 20 (2) ◽  
pp. 232-240 ◽  
Author(s):  
Izabella Mogilnicka ◽  
Marcin Ufnal

Background:Accumulating evidence suggests that microbiota play an important role in host’s homeostasis. Thus far, researchers have mostly focused on the role of bacterial microbiota. However, human gut is a habitat for several fungal species, which produce numerous metabolites. Furthermore, various types of food and beverages are rich in a wide spectrum of fungi and their metabolites.Methods:We searched PUBMED and Google Scholar databases to identify clinical and pre-clinical studies on fungal metabolites, composition of human mycobiota and fungal dysbiosis.Results:Fungal metabolites may serve as signaling molecules and exert significant biological effects including trophic, anti-inflammatory or antibacterial actions. Finally, research suggests an association between shifts in gut fungi composition and human health. Changes in mycobiota composition have been found in obesity, hepatitis and inflammatory bowel diseases.Conclusion:The influence of mycobiota and dietary fungi on homeostasis in mammals suggests a pharmacotherapeutic potential of modulating the mycobiota which may include treatment with probiotics and fecal transplantation. Furthermore, antibacterial action of fungi-derived molecules may be considered as a substitution for currently used antibacterial agents and preservatives in food industry.


Sign in / Sign up

Export Citation Format

Share Document