The heat-stable protein kinase C (PKC) stimulatory factor in the rat ovary may allow PKC to be active independent of cell membrane lipids

1995 ◽  
Vol 7 (5) ◽  
pp. 457-461 ◽  
Author(s):  
Kathleen M. Eyster
Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 45
Author(s):  
Suresh Velnati ◽  
Sara Centonze ◽  
Federico Girivetto ◽  
Daniela Capello ◽  
Ricardo M. Biondi ◽  
...  

PKCζ and PKCι/λ form the atypical protein kinase C subgroup, characterised by a lack of regulation by calcium and the neutral lipid diacylglycerol. To better understand the regulation of these kinases, we systematically explored their interactions with various purified phospholipids using the lipid overlay assays, followed by kinase activity assays to evaluate the lipid effects on their enzymatic activity. We observed that both PKCζ and PKCι interact with phosphatidic acid and phosphatidylserine. Conversely, PKCι is unique in binding also to phosphatidylinositol-monophosphates (e.g., phosphatidylinositol 3-phosphate, 4-phosphate, and 5-phosphate). Moreover, we observed that phosphatidylinositol 4-phosphate specifically activates PKCι, while both isoforms are responsive to phosphatidic acid and phosphatidylserine. Overall, our results suggest that atypical Protein kinase C (PKC) localisation and activity are regulated by membrane lipids distinct from those involved in conventional PKCs and unveil a specific regulation of PKCι by phosphatidylinositol-monophosphates.


1992 ◽  
Vol 60 (12) ◽  
pp. 5004-5012 ◽  
Author(s):  
J K Crane ◽  
M S Wehner ◽  
E J Bolen ◽  
J J Sando ◽  
J Linden ◽  
...  

1995 ◽  
Vol 67 ◽  
pp. 262
Author(s):  
F. Arakane ◽  
K. Fukunaga ◽  
K. Miyazaki ◽  
A. Ohshiee ◽  
K. Nishimura ◽  
...  

2016 ◽  
Vol 39 (3) ◽  
pp. 939-949 ◽  
Author(s):  
Thomas Peter ◽  
Rosi Bissinger ◽  
Florian Lang

Background/Aims: The echinocandin antifungal agent caspofungin has been shown to trigger apoptosis of fungal cells. Beyond that, caspofungin is toxic for host mitochondria. Even though lacking mitochondria, erythrocytes may enter apoptosis-like suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, caspase activation and/or activation of p38 kinase, protein kinase C, and casein kinase. The present study explored, whether caspofungin induces eryptosis and, if so, to shed some light on the cellular mechanisms involved. Methods: Flow cytometry was employed to determine phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to caspofungin (≥ 30 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly enhanced hemolysis, but did not significantly increase Fluo3-fluorescence, DCFDA fluorescence or ceramide abundance. The effect of caspofungin on annexin-V-binding was not significantly blunted by removal of extracellular Ca2+, by inhibition of caspases with pancaspase inhibitor zVAD (10 µM), or by addition of the antioxidant N-acetyl-cysteine (1 mM), p38 kinase inhibitor SB203580 (2 µM) or protein kinase C inhibitor staurosporine (1 µM). The effect of caspofungin on annexin-V-binding was, however, significantly blunted in the presence of casein kinase inhibitor D4476 (10 µM). Conclusions: Caspofungin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect possibly involving activation of casein kinase.


2015 ◽  
Vol 37 (6) ◽  
pp. 2464-2475 ◽  
Author(s):  
Marilena Briglia ◽  
Salvatrice Calabró ◽  
Elena Signoretto ◽  
Kousi Alzoubi ◽  
Stefan Laufer ◽  
...  

Background/Aims: Fucoxanthin, a carotenoid isolated from brown seaweeds, induces suicidal death or apoptosis of tumor cells and is thus considered for the treatment or prevention of malignancy. In analogy to apoptosis of nucleated cell, erythrocytes may enter eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and activation of p38 kinase or protein kinase C. The present study explored, whether and how fucoxanthin induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca2+]i from Fluo3-fluorescence, and abundance of reactive oxygen species (ROS) from DCFDA dependent fluorescence and lipid peroxidation using BODIPY fluoresence. Results: A 48 hours exposure of human erythrocytes to fucoxanthin significantly increased the percentage of annexin-V-binding cells (≥ 50 µM), significantly decreased average forward scatter (≥ 25 µM), significantly increased hemolysis (≥ 25 µM), significantly increased Fluo3-fluorescence (≥ 50 µM), significantly increased lipid peroxidation, but did not significantly modify DCFDA fluorescence. The effect of fucoxanthin on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+, and was insensitive to p38 kinase inhibitor skepinone (2 µM) and to protein kinase C inhibitor calphostin (100 nM). Conclusion: Fucoxanthin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of Ca2+ entry.


1985 ◽  
Vol 232 (2) ◽  
pp. 559-567 ◽  
Author(s):  
J R McDonald ◽  
M P Walsh

We have previously described the use of Ca2+-dependent hydrophobic-interaction chromatography to isolate the Ca2+ + phospholipid-dependent protein kinase (protein kinase C) and a novel heat-stable 21 000-Mr Ca2+-binding protein from bovine brain [Walsh, Valentine, Ngai, Carruthers & Hollenberg (1984) Biochem. J. 224, 117-127]. The procedure described for purification of the 21 000-Mr calciprotein to electrophoretic homogeneity has been modified to permit the large-scale isolation of this Ca2+-binding protein, enabling further structural and functional characterization. The 21 000-Mr calciprotein was shown by equilibrium dialysis to bind approx. 1 mol of Ca2+/mol, with apparent Kd approx. 1 microM. The modified large-scale purification procedure revealed three additional, previously unidentified, Ca2+-binding proteins of Mr 17 000, 18 400 and 26 000. The 17 000-Mr and 18 400-Mr Ca2+-binding proteins are heat-stable, whereas the 26 000-Mr Ca2+-binding protein is heat-labile. Use of the transblot/45CaCl2 overlay technique [Maruyama, Mikawa & Ebashi (1984) J. Biochem. (Tokyo) 95, 511-519] suggests that the 18 400-Mr and 21 000-Mr Ca2+-binding proteins are high-affinity Ca2+-binding proteins, whereas the 17 000-Mr Ca2+-binding protein has a relatively low affinity for Ca2+. Consistent with this observation, the 18 400-Mr and 21 000-Mr Ca2+-binding proteins exhibit a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, whereas the 17 000-Mr Ca2+-binding protein does not. The amino acid compositions of the 17 000-Mr, 18 400-Mr and 21 000-Mr Ca2+-binding proteins show some similarities to each other and to calmodulin and other members of the calmodulin superfamily; however, they are clearly distinct and novel calciproteins. In functional terms, none of the 17 000-Mr, 18 400-Mr or 21 000-Mr Ca2+-binding proteins activates either cyclic nucleotide phosphodiesterase or myosin light-chain kinase, both calmodulin-activated enzymes. However, the 17 000-Mr Ca2+-binding protein is a potent inhibitor of protein kinase C. It may therefore serve to regulate the activity of this important enzyme at elevated cytosolic Ca2+ concentrations.


Endocrinology ◽  
1993 ◽  
Vol 133 (5) ◽  
pp. 2127-2132 ◽  
Author(s):  
T Shimamoto ◽  
M Yamoto ◽  
R Nakano

1985 ◽  
Vol 232 (1) ◽  
pp. 43-47 ◽  
Author(s):  
P J Raval ◽  
D Allan

Treatment of human or sheep erythrocytes with PMA (phorbol myristate acetate) enhanced [32P]phosphate labelling of membrane polypeptides of approx. 100, 80 and 46 kDa. The 80 kDa and 46 kDa polypeptides coincided with bands 4.1 and 4.9 respectively on Coomassie-Blue-stained gels. Similar but smaller effects were obtained by treating human cells with 1-oleoyl-2-acetyl-rac-glycerol (OAG), exogenous bacterial phospholipase C or ionophore A23187 + Ca2+, each of which treatments would be expected to raise the concentration of membrane diacylglycerol. In contrast, sheep cells, which do not increase their content of diacylglycerol when treated with phospholipase C or A23187 + Ca2+, only showed enhanced phosphorylation with OAG. Neither human nor sheep cells showed any enhanced [32P]phosphate labelling of phosphoproteins when treated with 1-mono-oleoyl-rac-glycerol. It is concluded that diacylglycerol from a variety of sources can activate erythrocyte protein kinase C, but that the most effective diacylglycerol is that derived from endogenous polyphosphoinositides. In contrast with bacterial phospholipase C and A23187, which stimulate synthesis of phosphatidate by increasing the cell-membrane content of diacylglycerol in human erythrocytes, PMA, OAG or 1-mono-oleoyl-rac-glycerol caused no change in phospholipid metabolism.


Sign in / Sign up

Export Citation Format

Share Document