A complementary III–V heterostructure field effect transistor technology for high temperature integrated circuits

1995 ◽  
Vol 29 (1-3) ◽  
pp. 54-57 ◽  
Author(s):  
Craig Wilson ◽  
Anthony O'Neill ◽  
Steven Baier ◽  
James Nohava
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiaoshi Jin ◽  
Yicheng Wang ◽  
Kailu Ma ◽  
Meile Wu ◽  
Xi Liu ◽  
...  

AbstractA bilateral gate-controlled S/D symmetric and interchangeable bidirectional tunnel field effect transistor (B-TFET) is proposed in this paper, which shows the advantage of bidirectional switching characteristics and compatibility with CMOS integrated circuits compared to the conventional asymmetrical TFET. The effects of the structural parameters, e.g., the doping concentrations of the N+ region and P+ region, length of the N+ region and length of the intrinsic region, on the device performances, e.g., the transfer characteristics, Ion–Ioff ratio and subthreshold swing, and the internal mechanism are discussed and explained in detail.


2016 ◽  
Vol 13 (2) ◽  
pp. 39-50 ◽  
Author(s):  
Zheng Chen ◽  
Yiying Yao ◽  
Wenli Zhang ◽  
Dushan Boroyevich ◽  
Khai Ngo ◽  
...  

This article presents a 1,200-V, 120-A silicon carbide metal-oxide-semiconductor field-effect transistor (SiC MOSFET) phase-leg module capable of operating at 200°C ambient temperature. Paralleling six 20-A MOSFET bare dice for each switch, this module outperforms the commercial SiC modules in higher operating temperature and lower package parasitics at a comparable power rating. The module's high-temperature capability is validated through the extensive characterizations of the SiC MOSFET, as well as the careful selections of suitable packaging materials. Particularly, the sealed-step-edge technology is implemented on the direct-bonded-copper substrates to improve the module's thermal cycling lifetime. Though still based on the regular wire-bond structure, the module is able to achieve over 40% reduction in the switching loop inductance compared with a commercial SiC module by optimizing its internal layout. By further embedding decoupling capacitors directly on the substrates, the module also allows SiC MOSFETs to be switched twice faster with only one-third turn-off overvoltages compared with the commercial module.


2018 ◽  
Vol 924 ◽  
pp. 949-952 ◽  
Author(s):  
David J. Spry ◽  
Philip G. Neudeck ◽  
Dorothy Lukco ◽  
Liang Yu Chen ◽  
Michael J. Krasowski ◽  
...  

This report describes more than 5000 hours of successful 500 °C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 °C. After 100 hours of 500 °C burn-in, the circuits (except for 2 failures) exhibit less than 10% change in output characteristics for the remainder of 500 °C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460 °C in comparison to what is observed for Earth-atmosphere oven testing at 500 °C.


Sign in / Sign up

Export Citation Format

Share Document